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ABSTRACT 

Earth-Crossing Asteroids (ECAs) are those asteroids whose orbit cross-section 

can intersect the capture cross section of the Earth as a result of secular gravitational 

perturbations. This thesis provides a framework for understanding the origin, nature, and 

types of ECAs. The change in velocity requirements to achieve a two Earth radii 

deflection for long and short-term warning scenarios are developed. Next, a method of 

developing hypothetical Earth colliding asteroid orbits is presented. These hypothetical 

orbits are used in two ways: (1) to evaluate the ability of Dance of the Planets, a solar 

system simulation model developed by Applied Research and Consulting, Inc., to 

accurately propagate orbits of imported asteroid orbits, and (2) to analyze the sensitivity 

of deflection distance to variation in deflection angle and orbital parameters of a given 

orbit. Inaccuracies during importation of data precluded the use of Dance of the Planets 

for the purpose of sensitivity analysis. The program does provide an excellent tool for 

visualization of EC A scenarios. Consequently, a simpler orbital model was developed to 

provide a Earth miss distance sensitivity analysis. With one asteroid orbital period 

warning the minimum change in velocity to deflect an asteroid two Earth radii is 

approximately 0.135 m/s and the optimal deflection is along the flight path. Maximum 

deflection occurs when the deflection is applied at perihelion. The miss distance decreases 

markedly with increase in true anomaly until it is a minimum at aphelion. 
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I. INTRODUCTION 

Impacts by Earth-crossing Asteroids (ECAs) and comets, collectively known as 

Near-Earth Objects (NEOs), pose a significant and unique challenge to the scientific 

community. The study of these space-borne bodies has spanned a broad range of 

disciplines: mechanical, electrical, aeronautical, and astronautical engineers, 

astronomers, nuclear physicists, to name but a few. Various camps have, at different 

times, proposed new search strategies and detection methods to ensure a proper tally of 

potential colliders, forwarded techniques, both nuclear and non-nuclear, to mitigate the 

disaster a colliding body may impart, and designed missions to intercept, rendezvous, and 

study a few of the closer bodies. The recent impact of comet Shoemaker-Levy 9 with 

Jupiter only served to stimulate additional interest in the subject of NEOs. 

Recognizing the potential seriousness of such events, the United States Congress 

in 1992 mandated that the National Aeronautics and Space Administration (NASA) 

conduct two workshops to study two major research areas of NEOs: Detection and 

Mitigation. The United States House of Representatives, in NASA Multiyear 

Authorization Act of 1990 said, in part: 

The committee believes that it is imperative that the detection rate of 
Earth-orbit-crossing asteroids must be increased substantially, and that the 
means to destroy or alter the orbits of asteroids when they threaten 
collision should be defined and agreed upon internationally. 

The chances of the Earth being struck by a large asteroid are extremely 
small, but since the consequences of such a collision are extremely large, 
the Committee believes it is only prudent to assess the nature of the threat 
and prepare to deal with it. We have the technology to detect such 
asteroids and to prevent their collision. 

The Committee therefore directs that NASA undertake two workshop 
studies. The first would define a program for dramatically increasing the 
detection rate of Earth-orbit-crossing asteroids; this study would address 
the costs, schedule technology, and equipment required for precise 
definition of the orbits of such bodies. The second study would define 
systems and technologies to alter the orbits of such asteroids or to destroy 
them if they should pose a danger to life on Earth. The Committee 



recommends international participation in these studies and suggest that 
they be conducted within a year of the passage of this legislation. [Ref. 1] 

As a result two conferences were conducted. The first, the NASA International 

Near-Earth-Object Detection Workshop, was conducted in three sessions from June 

through November 1991. Their work concentrated on improving the rate at which ECAs 

are discovered; the results are documented in reference 1. The second conference, The 

Near-Earth-Object Interception Workshop, was held in January 1992 and hosted by Los 

Alamos National Laboratory. It concentrated on the issues surround the mitigation of 

ECAs and associated technologies. Even more recently, an ECA conference was held in 

March 1995 at Lawrence Livermore National Laboratories. Conference proceedings have 

not yet been published. 

These conference reports address the majority of the issues surrounding NEOs; 

however, there is much work remaining. Advances in detection technology such as 

improved sensors, computer search algorithms,     d space radar support would 

significantly speed the rate at which NEOs are identified. Space missions to candidate 

asteroids can provide essential information regarding the structure and composition of 

asteroid bodies. Optimization of intercept trajectories and continued improvements to the 

space launch vehicles will all be directly applicable to the mitigation of these potentially 

dangerous objects. 

At the onset of this project there were three main goals: (1) Conduct a thorough 

and exhaustive survey of the current literature in the area of ECAs, (2) Analyze and 

select from commercially available software applications the candidate most likely to aid 

in the visualization of asteroid mitigation through deflection, and (3) Develop mitigation 

scenarios and determine the sensitivity of the circular solution to elliptical orbits. 

Research under the Space Warfare Research Program, sponsored by the Air 

Force's Space Warfare Center, was divided into four sections. Two major components of 

NEOs, ECA's and Earth-crossing Comets (ECCs), are described and categorized. 



Deflection options are presented and the maximum size asteroid which could be deflected 

is estimated. The most effective deflection angle is established and the required change 

in velocity to perturb an object by two Earth radii is determined. Methodology for 

developing hypothetical asteroid orbits is also presented. A commercially available 

software application, Dance of the Planets, is evaluated for its usefulness in verifying the 

deflection of assailant objects and testing the mathematical solutions for optimal 

deflection. Finally, an analysis of sensitivity of miss distance to variations in orbit shape 

and deflection direction is conducted. The issues compiled in this thesis address only a 

small portion of the asteroid mitigation problem, and an even smaller portion of the 

broader subject of EC As. 





II. NEAR EARTH OBJECTS 

A. INTRODUCTION 

There are two broad categories of objects whose orbits bring them close to that of 

the Earth: asteroids and comets. Astronomers classify the objects into one of the two 

categories based upon their telescopic appearance. Any object which appears to be star- 

like is called an asteroid. If the object has a visible atmosphere or a tail then it is a comet 

[Ref. 1] This difference is, in part, due to the composition of the of the object. Asteroids 

have no atmosphere and may have physical and compositional properties ranging from 

loosely aggregated cometary ices to solid metal. [Ref. 2] Comet nuclei are composed of 

a complex mixture of volatile ices, water, and hydrocarbon and silicate grains. As a 

comet is heated by the Sun as it approaches perihelion, there is a noticeable out-gassing of 

evaporative material. [Ref. 3] Further discussions on each broad classification of Near- 

Earth Objects (NEOs) are provided below. 

B. ASTEROIDS 

When viewing the solar system, shown in Figure 1 Figure 1, the empty gap 

between Mars and Jupiter is readily apparent. Kepler contemplated a "missing planet" as 

he studied the solar system, as described by the measurements of Tycho Brahe. [Ref. 4] 



Figure 1. Depiction of Solar System Through Jupiter. From Ref. 4. 

Bode's law, named after Johann Bode's effort to stir interest in an unknown planet 

in 1772, uses a simple relationship to generate the mean distances in Astronomical Units 

(AU) of the principal planets. The relationship is generated by writing down the series 0, 

3, 6, 12,..., add 4 to each number and dividing by 10. As shown in Table 1, Bode's law 

generates fairly accurate locations for all the planets except Neptune and Pluto. 

PLANET 
BODE'S LAW 

DISTANCE 
ACTUAL 

DISTANCE 
Mercury 0.4 0.39 
Venus 0.7 0.72 
Earth 1.0 1.00 
Mars 1.6 1.52 
Asteroids (average) 2.8 2.65 
Jupiter 5.2 5.20 
Saturn 10.0 9.52 
Uranus 19.6 19.28 
Neptune 38.8 30.17 
Pluto 77.2 39.76 

Table 1. Bode's Law vs. Mean Plan« 2tary Distance 



This fits the actual positions of the planets through Saturn very well, except for the 

position at 2.8 AU. This position, between the orbit of Mars and Jupiter remains empty, 

except for the asteroid belt. [Ref. 4] 

1. Early History 

In view of Bode's law, a group of 24 astronomers formed a society in Europe in 

1800 to solve the problem of a planet, surmised to be missing, between Mars and Jupiter. 

Each astronomer was given a region of the zodiac. [Ref. 4]. 

Giuseppe Piazzi, in Palermo, Italy, was already engaged in a star charting project. 

He located a dim, uncharted 'star' that shifted position from night to night. This was 

Ceres, discovered on January 01, 1801. He observed it for 41 days before it was lost due 

to bad weather and the illness of Piazzi. [Ref. 4]. 

Karl Friedrich Gauss became involved with the intricate mathematical problem of 

calculating an adequate recovery orbit for Ceres. With his help, Ceres was sighted on 

December 07, 1801. Gauss' ingenuity was of great significance to the field of celestial 

mechanics. The basic elements of Ceres were eccentricity of 0.08, inclination of 11°, and 

semi-major axis of 2.77 AU.    [Ref. 4]. 

Heinrich Wilhelm Olbers found a second unknown 'planet', Pallas, in March 

1802, while helping Gauss observe Ceres. Gauss next calculated an orbit for Pallas. 

Many scientists contributed in the calculation of the orbital elements, and in the 

development of perturbation theories to account for the influence of Jupiter. This was 

one of the first documented efforts at the development of planetary theory from which 

highly accurate planet ephemerides are possible. [Ref. 4]. 

Discovery of additional asteroids progressed rapidly over the course of the next 

century, particularly with the implementation of photography in the search process in 

1891. By 1900,463 asteroids had been discovered, and by 1950,1568. By 1993, 

approximately 5500 numbered asteroids had been documented. Approximately 300 



numbered asteroids are added annually. Numbered asteroids have orbits confirmed by 

observations at two or more oppositions (when the asteroid-Earth-Sun angle equals 180°). 

Many others asteroids have only provisional designations. [Ref. 4]. 

2. Origin and Nature of Asteroids 

There are many plausible explanations for the existence and formation of 

asteroids. One scenario suggests the asteroids formed from planetesimals which were 

never able to accrete into planet sized bodies due to the disturbing influences of a proto- 

Jupiter. There are many inconsistencies with this theory. First, from the planetesimal 

model, there should be between one and two Earth masses of planetesimals in the region 

of the asteroid belt. All of the asteroids together, however, are no more than 0.08% of the 

mass of the Earth. Some mechanism is responsible for this loss of mass. Secondly, 

individual asteroids have high relative velocities. They do not fit the orderly picture of 

planetesimals analogous to Saturn's rings: bodies lying in nearly the same plane with low 

relative velocities between neighboring bodies. Again, some mechanism is responsible 

for the high relative velocities which produce collision fragmentation and not collision- 

accretion. Finally, many stony and metallic meteorites, derived from asteroids, have clear 

indications of melting, elemental differentiation, and slow cooling, similar to that found 

in the planets. The process of this development is not fully understood. [Ref. 4]. 

There has been much debate as to the origin of near-Earth asteroids. Because 

these are planet crossing asteroids, they have a dynamic lifetime (the average time before 

a planet crossing asteroid impacts one of the inner planets) of approximately 3 x 107 yr. 

As such, there must be some mechanism responsible for their replenishment. There are 

two main theories, divided largely between observers and dynamicists, which attempt to 

explain the source of these objects. Observers generally believe that the near-Earth 

asteroids were derived from the main asteroid belt due to spectropically similar objects in 

the main belt. Dynamicists believe they may be largely of cometary origin. They do not 
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believe that there is sufficient dynamical interaction in the main asteroid belt to resupply 

the near-Earth orbit asteroid population. [Ref. 3] 

Asteroids are numbered in the order they are discovered with orbits verified with a 

minimum of three observations. The majority also have names assigned. The first 

asteroid discovered, 1 Ceres, is approximately 932 km in diameter, and represents about 

30% of the total mass of asteroids. 4 Vesta and 2 Pallas, approximately 528 km and 523 

km, respectively, are next in size. There are approximately 30 other main belt asteroids 

with diameters larger than 200 km. For objects with the same density, the mass varies as 

the third power of their linear dimensions. From this, it is easy to ascertain that most of 

the total mass of the asteroids is found in the few largest. Ceres is just below the limit for 

the class-3 satellite size category of 1000-1600 km, of which Saturn and Uranus each 

have four.    [Ref. 4]. 

3. Asteroid Close Approaches 

Although there are a large number of asteroids, their number is limited by our 

ability to detect them. This remains one of the biggest challenges in the field. Most 

newly discovered asteroids are dimmer and usually smaller than previously discovered 

asteroids. By far the majority are fragments of ancient parent bodies, unlike Ceres which 

has retained most of its original shape and mass. [Ref. 4]. 

Near Earth Asteroids (NEA) are of interest because they lie well inside the main 

asteroid belt, and they do not have long term stability because they will eventually either 

1) collide with one of the inner planets, or 2) be ejected from this region by a near- 

collision encounter. Earth impact rate for objects of potentially cataclysmic size is 

estimated at 3-4 per million years. No such collisions have been yet been predicted, 

however. The "spacewatch" telescope on Kitt Peak finds several close approaches per 

month. [Ref. 4]. 



Many EC As have come relatively close to the Earth. Hermes, in 1937, passed 

within 800,000 km (twice the distance to the Moon) of the Earth. It's orbit was lost and 

it's location is no longer known. On January 18, 1991, 199 IB A passed within 

approximately 170,000 km (0.0011 AU) of the Earth. The newly discovered near-Earth 

asteroid 1994 XM1 made the closest approach to the Earth of any object discovered 

outside the earth's atmosphere—some 105,000 km on the morning of Dec. 9 over Russia. 

The diameter was estimated to be approximately 6-13 meters. 

There are many more asteroids with the potential for inner planet encounters. 

Among them are 433 Eros, 887 Alinda, 1036 Ganymed, 1221 Amor, 1566 Icarus, 1580 

Betulia, 1620 Geographos, and 1627 Ivar. There are many other inner asteroids of note. 

3200 Phaethon has the greatest asteroid eccentricity, and the smallest perihelion, 0.135 

AU, 1951 Lick is located entirely between the orbits of Earth and Mars; it doesn't cross 

any orbit. 2062 Aten is entirely inside Earth's orbit. 2102 Tantalus has the highest 

inclination of any numbered asteroid (64°).  1973na has an even greater inclination (68°). 

4. Earth-Crossing Asteroids 

There are many asteroids well within the orbits of the inner planets. A current list 

of all EC As through 1991 in contained in reference 5. These asteroids are of interest 

because they lie well inside the main asteroid belt. Some of these come quite close to the 

orbit of Earth. An Earth-crossing Asteroid (ECA) has been defined as a minor planet 

whose orbit can intersect the capture cross-section of the Earth as a result of secular 

gravitational perturbations. [Ref. 5] ECAs have secular periods on the order of tens of 

thousands of years. 

a. Secular Variations 

It has been shown that an asteroid orbit which overlaps the orbit of a planet 

may, as a result of the advance of the line of apsides, intersect the orbit of the planet. If 
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the orbit of the planet is of low eccentricity and is overlapped by an asteroid orbit which is 

highly eccentric, the two orbits will be linked, like links of a chain, when the argument of 

perihelion is 0 or % and unlinked when the unlinked at %/2 or 37t/2. In one complete 

rotation of the line of apsides, the orbits transition from linked to unlinked states a total of 

four times, providing four possible intersections of the two orbits. These intersections of 

crossings may be found by solving the polar equation of the ellipse, and occur at 

,    1 
© = COS    ± — 

e 
a(}-e2)   l 0) 

where © is the argument of perihelion, a is the semi-major axis of the asteroid orbit, e is 

the eccentricity of asteroid orbit at the time of intersection, and p is the radius to the 

planet's orbit along the line of nodes at the time of intersection. [Ref 6] Because most 

planet's orbits are not circular and there are secular variations in e, p will have four 

different values for each rotation of the line of apsides which can be found by 

simultaneously solving Eqn (1) and the polar equation for the elliptical orbit of the planet. 

This type of orbit is referred to as a quadruple crosser, and is shown in Figure 2 using 

asteroid 2062 Aten as an example. The figure shows one cycle of advance of© starting at 

© = 0. The solid line shows the ascending node and the dashed line shows the descending 

node. 
r. . .wwv.w.-«. Vi. .;*->,, 

■■■■ili 
J        \ MIlitltiliiplI^Äp 

\-'i i««iisplii«lllllli»l 

Figure 2.   Secular Variation of Radius to the Node of the Orbit of 2062 
Aten. From Ref. 6. 
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Secular variations in e may be sufficiently high to change the depth of 

orbital penetration of the assailant body. In this case the orbits may transition from a non- 

overlapped condition at © = 0, % to a relatively deep overlap at ©7r/2, 3TII2. The first 

crossing occurs due to the secular increase in e as © begins its rotation from 0 to nil, thus 

linking the orbits. The second crossing occurs as © increases sufficiently to unlink the 

orbits. Thus, there are two crossings during each V2 advance of the line of apsides. This 

type of asteroid is known as an octup: > crosser. An example is shown in using asteroid 

1580 Betulia, the first asteroid where this type of behavior was recognized. [Ref. 6] 

Approximately 1.5 cycles of advance of© are shown, with the solid line representing the 

ascending node and the dashed line representing the descending node. 

..,r.v_\,     ~   .li   ,,_, 

•y-if.ps 

Figure 3.   Secular Variation of Radius to the Node of the Orbit of 
1974MA. From Ref. 6. 

If the inclination of the asteroid with respect to the ecliptic plane is 

sufficiently high, the secular perturbations are not strong enough to influence a 

continuous advance in ©. In this case, © librates around n/2 or 37t/2. When this occurs, a 

large oscillation of e can occur during the libration cycle leading to orbit intersection four 

times during each libration cycle of©. These types of asteroid are called quadruple 

crossing co librators. An example is shown in Figure 4 using asteroid 1973 NA. 

Approximately five libration cycles of omega are shown. [Ref. 6]. 
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W W V// V-'  w/ ! u7      V//      Vv.<      \'       V    : 

Figure 4. Secular Variation of Radius to the Node of the 
Orbit of 1973 NA. From Ref. 6. 

The fourth type of EC A are known as supercrossers and result from 

asteroids that librate about the 3:1 commensurability with Jupiter. The resonant effects of 

these perturbations cause a relatively high frequency oscillation in a and e which lead to 

relatively high frequency oscillations (4 cycles in approximately 1400 years) between 

periods of overlap and nonoverlap of the two orbits. For example, asteroid 1915 

Quetzalcoatl, shown in Figure 5, had nine crossings of the Earth's orbit over a period of 

approximately 1400 years. Approximately four cycles of libration of the mean motion of 

the asteroid are shown. [Ref. 6]. 

""  '.»>>.    <-:r    »Hi» no) moo tyc r»/o rm :rx> r.iw- >~«i .-<« :~o 
JUt«:. «MS 

Figure 5.   Secular Variation of Radius to the Ascending 
Node of 1915 Quetzalcoatl. From Ref. 6. 

b. Classes of Earth-Crossing Asteroids 

In addition to classifying asteroids by the type of secular perturbations they 

experience, Earth-crossing asteroids are further divided into three groups on the basis of 
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their present osculating orbital elements: (1) Aten asteroids, (2) Apollo asteroids, and 

(3) Earth-crossing Amor asteroids. 

(1) Aten. The orbits of Aten asteroids have a semi-major axis less 

than 1 AU. Their orbits overlap those of the Earth near their aphelia, as shown in Figure 

View Looking Down +Z 

Asteroids Orbit 

2340 Hathor 
a = 0.844 
e = 0.450 
Q= 1.224 

Earth's Orbit 

* = Aphelion 
o = Perihelion 

Figure 6. An Aten Type Asteroid. 

This class includes all asteroids with a < 1.0 AU and with the aphelion distance of the 

asteroid, Q > 0.983 AU. The asteroid's orbit can intersect that of Earth as the Earth's 

perihelion distance is 0.983 AU. The first Aten was discovered relatively recently, in 

1976. Fifteen were known as of August 1993. They represent approximately 10% of the 

180 known ECAs. The first three discovered exhibit continuous, or nearly continuous 

orbital overlap with Earth and are characterized as deep quadruple crossers. [Ref. 6]. 

The total number of Aten asteroids to visual magnitude has been 

estimated to be on the order of 100. In the same way that some Earth-crossing Amors 

have current osculating orbits entirely outside the orbit of the Earth, some Atens may 

have ort its entirely inside the orbit of the Earth. Shoemaker et. al. numbers these at a few 

tens of objects out to visual magnitude 18. [Ref. 6] 
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(2) Apollo. The orbits of Apollo asteroids are those asteroids with 

a> 1.0 AU, and perihelion distance, q<\S)\l AU, where 1.017 is the aphelion distance of 

the Earth. An example is presented in Figure 7. 

View Looking Down +Z axis 

4660 Nereus 
a = 1.490 

Asteroids Orbit e = 0.360 
q= .954 

Figure 7. An Apollo Type Asteroid. 

125 Apollos have been discovered, which represents approximately two-thirds of all 

EC As. All but about 5% of all Apollo asteroids are ECAs. [Refs. 6 and 5] Of those 

known in 1979, approximately 60% were quadruple crossers, 20% were octuple crossers, 

5% were quadruple crossers part of the time at octuple crossers part of the time, and 15% 

were quadruple crossing co librators. [Ref. 6] In 1932 the first Earth-crossing asteroid, 

1862 Apollo, was found by K. Reinmuth at Heidelberg. [Ref. 8] 

(3) Amor. Although Amor asteroids have perhaps the simplest 

definition of all, the fact that some are in Earth-crossing orbits can be confusing. Their 

orbits are defined strictly upon the orbital perihelion distance, 1.017 < q 2 < 1.3 AU. They 

have perihelions close, but a little outside of the Earth's orbit. The first discovery of an 

asteroid of this class was 433 Eros in 1898. [Ref. 4] However, the traditional name for 

Atens comes from the asteroid of the same name discovered by E. Delporte at Uccle, in 

1932. [Ref. 8] The 47 known Amor asteroids comprise approximately 25% of all ECAs. 

[Ref. 5] The upper limit for perihelion distance of 1.3 AU was chosen because is it is 
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near a minimum in the radial frequency distribution of q for discovered objects. [Ref 6] 

As discussed previously, some Amors can become Apollos and vice versa, due to secular 

perturbations. The classifications are based on the category at the time of discovery. For 

example, if the Amor asteroid 1915 Quetzalcoatl had been discovered in 1942, it would 

have been classified as an Apollo asteroid. [Ref. 6] An example of an Earth-crossing 

Amor is shown Figure 8. 

View Looking Down +Z axis 

3228 Seleucus 
a = 2.032 
e = 0.651 
q= .709 

■ Aphelion 
"Perihelion 

Figure 8. An Amor Type Asteroid. 

c. Distant Asteroids 

While most asteroids are contained within the main belt, there are some 

that lie outside that area. The Trojans, shown in Figure 1, are a group of approximately 

100 asteroids in two thinly populated lobes centered on Jupiter's orbit at about the 

Lagrangian L4 and L5 points. They are in stable orbits and have an orbital resonance of 

1:1 (the ratio of the number of orbits of the asteroid to that of a third body) with Jupiter. 

While not tightly grouped about the Lagrangian points, they librate about these nominal 

positions, moving closer and further from Jupiter, but not far from its orbit. [Ref. 4] 
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Opposite Jupiter, there is a thinner lobe centered on the Lagrangian L3 

point. These are known as the Hilda asteroids and have a 3:2 resonance with Jupiter. 

Over 40 Hilda type asteroids have been discovered. Hilda orbits are very similar to some 

short-period comet orbits. The difference being that the Hilda asteroids are in stable 

orbits while the short-period comets are not. [Ref. 4] 

Another asteroid of note is 279 Thule. It is the only known 4:3 asteroid. It 

is unique in that having a resonance near unity places it near Jupiter's orbit where it is 

strongly perturbed every three Jovian years, yet remains in a stable orbit. 944 Hidalgo has 

a comet-like orbit that takes it out nearly to Saturn. 1373 Cincinnati experiences 

relatively strong perturbations from Jupiter but has no resonance making it unique. 

2060 Chiron was the first trans-Saturn asteroid. Discovered in 1977, it has 

a diameter of approximately 200 km. Its motion has been simulated by researchers back 

to 1664 BC, when it appears to have come within approximately 0.1 AU of Saturn. 

1992QB1 appears to be of similar size to Chiron but its orbit extends beyond that of 

Pluto. Exotic bodies such as these may be from the long-postulated Kuiper belt, 

discussed in the comet section. 

d. Asteroid Classifications 

Asteroids are of four different classifications based upon the photometric 

characteristics of the reflected light, the amount of which is a function of their nature and 

composition of their surface material. This classification is only based upon spectral 

characteristics. The main types have good correlation to location in the asteroid belt. 

Most asteroids fall into one of the following four categories. [Ref. 4]. 

S-type. A broad distribution of asteroids centered at about 2.3 AU 

from the Sun. This type is associated with stony-iron meteorites, although some scientists 

question this association. These asteroids have high concentrations of nickel and iron, 

with approximately equal amounts of metals and silicates. These are presumed to be the 
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exposed fragments from the inner cores of larger parent bodies. These are the second 

most prevalent type of asteroid. [Ref. 4]. 

C-type. The most common type of asteroid with a relatively sharp 

distribution centered at about 3.1 AU from the Sun. Thought to be composed of material 

similar to carbonaceous chondritic meteorites, C-types are very dark with an albedo of 

approximately 0.04. They have various grainy, carbon rich, rock-like mineralogies, and 

are a complicated group to examine photospectrally. Most scientists agree Ceres is a C- 

type asteroid. [Ref. 4]. 

M-type. Asteroids with moderate reflectivity and a reddish spectra 

associated with metals, particularly Ni-Fe are known as M-type asteroids. Similar 

meteorites are the nickel-irons and the enstatite chondrites, which have Ni-Fe embedded 

in silicates. There are not many M-type asteroids. The distinction between M-type and 

S-type asteroids is not clear and there are many similarities between them.    [Ref. 4]. 

D-type. D-type asteroids have low albedos and reddish spectra and 

are primarily the Trojans, located near the orbit of Jupiter. They are composed mostly of 

clays with magnetite and carbon-rich materials. No meteorites match these spectral 

characteristics but the dark side of Saturn's Iapetus is a good match. [Ref. 4]. 

e. Earth-Crossing Asteroid Population 

Visual magnitude is defined as an arbitrary number, measured on a 

logarithmic scale, used to indicate the brightness of an object. A one magnitude 

difference is the fifth root of 100, and is approximately equal to a factor of 2.512. The 

brighter the asteroid, the lower the numerical value of magnitude. Very bright objects 

have negative magnitudes. 

The absolute magnitude, H, of an asteroid is the magnitude the asteroid 

would have if it were 1 AU from the Sun, and viewed from the Sun. For example, if an 
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asteroid was 2 AU from the Sun and viewed from 1 AU away, it would be four times 

dimmer, or about 1.5 magnitude less bright. 

As most ECAs are discovered through direct telescopic observation, the 

absolute magnitude of the asteroids is of extreme importance to an observer. In general, 

the larger the diameter of an object, the lower the value of absolute magnitude (the object 

is brighter than a similar asteroid of smaller diameter). As a result, the large asteroids are 

often discovered more quickly than the smaller objects. 

The two most common types of asteroids are C-type and S-type. Table 2 

presents the current estimates of EC A discovery completeness based on absolute 

magnitude, H. Estimated diameters, based on the albedo of the two most prevalent types 

of asteroids, are also presented. 

H 
Percent 

discovered 
Asteroid type 

C-type diameter S-type diameter 
13.2 100% 12 km 6km 
15.0 35% 6km 3km 
16.0 15% 4km 2km 
17.7 7% 2km 1km 

Table 2. Estimated Discovery Completeness From Ref. 5 

Numerous studies have attempted to estimate the total number of asteroids 

in Earth-crossing orbits. These estimates are based on a power law relationship 

N = k Db (2) 

where N is the number of asteroids larger than a given diameter, D. A: is a constant and b 

is the power-law exponent. The general form of the size distribution is based on 

observation as the actual detailed distributions remain unknown. 

There are approximately 180 known Earth-crossing asteroids. The 

characteristics of Apollo asteroids that overlap the Earth's orbit part of the time and the 

characteristics of Earth-crossing Amors are essentially identical. The distinction is 
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derived from the present state of the cycle of variation of their perihelion distance. The 

majority of Earth-crossing Amors are shallow crossers, while the majority of Apollos are 

deep crossers. Because the orbits of most Earth-crossing Amors only overlap the orbit of 

Earth for a small period of time, they retain their traditional classification as Amor 

asteroids. [Ref. 6] 

Based on the best information to date, an estimate of the number of Earth- 

crossing asteroids larger than a given diameter, D, are shown in Figure 9. For this 

population model, changes in the power law are estimated to occur at diameters of 10 m, 

70 m, and 3.5 km. 
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Figure 9. Estimated Number of Earth-Crossing Asteroids. From Ref. 5. 

C. COMETS 

Comets are a diffuse bodies of gas and solid particles (such as CN, C2, NH3, and 

OH), which orbit the Sun. Their orbits are highly elliptical or even parabolic in nature. 

Edmund Halley used Newton's celestial mechanics to show that comets orbited the Sun. 

He then deduced that one spectacular comet in particular was returning to Earth with a 

period of 76 years. His correct prediction of the comet's return in 1758 made it comet 
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Halley. Today, as many as 1011 to 1012 comets remain, orbiting the solar system in the 

Oort Cloud and Kuiper Belt, described in Section 2, below. 

1. Comet Classifications 

Comets which have an elliptical orbit are known as periodic comets. A significant 

number of comets also have parabolic or hyperbolic orbits and will, therefore, make only 

one perihelion passage. The periodic comets are further divided into short-period and 

long-period comets. 

a. Short-Period Comets 

Short period comets are defined as those whose orbits lie predominately 

within the realm of the solar system. These include all the comets which have been seen 

more than once. The shortest known period is that of comet Encke at 3.3 years while the 

longest extend up to 200 years. Most short-period comets have inclinations close to the 

ecliptic, less than approximately 35°. [Refs. 4 and 3] About 95% move in a direct sense. 

Comet Halley is a short period comet in a retrograde orbit. More recently, short-period 

comets have been further divided into two additional classes: (1) Jupiter and (2) Halley. 

Comets in the Jupiter family have periods of less than 20 years with inclinations close to 

that of the ecliptic and direct orbits. Halley type comets have period of 20 < P < 200 

years. In general, Halley type comets have higher average inclinations than Jupiter type 

comets. 

b. Long-Period Comets 

Long period comets are those with periods greater than 200 years. Long- 

period comets are randomly distributed on the celestial sphere. Often it is difficult to 

distinguish an orbit with a very long period (on the order of 105 -107 years) from a 

parabolic or hyperbolic orbit. Many appear to have aphelia of 20,000-50,000 AU. These 

types of comets come from all directions. There is no relationship for the orientation of 
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the orbit with respect to the ecliptic or for direct revolution. Approximately one-third of 

all long-period comets observed are on weakly hyperbolic orbits. 

2. The Origin and Nature of Comets 

Many scientists believe comets to be planetesimals formed in the colder reaches 

of the solar system, beyond Saturn, and perhaps beyond Neptune. Those "cometesimals" 

in the planet realm of the solar system were presumed to be ejected by perturbations from 

the outer planets. These comets now reside in the Oort Cloud, at the outer reaches of our 

Sun's gravitational influence. The Oort cloud, named after Jan Oort in 1950, is a 

reservoir of comets located about a light-year from the Sun. 

Comets are brought into the Earth's realm from their orbits in the Oort cloud or 

the Kuiper belt as they are perturbed by Jupiter or passing stars every few million years 

and result in comet insertion back into the solar system. [Ref. 9] 

At the same time Jan Oort was formulating his hypothesis, the structure of comets 

was proposed by Fred Whipple. His "dirty snowball" model hypothesizes a composition 

of various ices, predominantly H20, along with lesser amounts of silicate and other 

mineral dusts. This analysis of the dirty snowball/Oort cloud has remained the generally 

accepted model, with subsequent modification and elaboration due to follow-on research. 

Relatively recent comet space probes, particularly to comet Halley in 1986, have greatly 

increased general knowledge about the comet. 

3. The Oort Cloud 

The factors that led to Oort's comet cloud model were 1) very long-period orbits 

that were commonly found to have aphelia of around 50,000 AU, 2) the large reservoir 

that would be required in order to supply comets over the last 4 billion years at the rate 

they appear in the inner solar system (a trillion or so), and 3) the fact that very long- 

period comets appear from all directions. Oort proposed that the planetary system was 
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surrounded by a distant spherical cloud of comets extending approximately one-half the 

distance to the nearest stars. The comet cloud is perturbed by passing stars which cause 

the injection of a long-period comet into our solar system. The source of the Oort cloud 

is postulated to be icy planetesimals ejected by the proto-planets in the outer solar system, 

particularly Uranus and Neptune. [Ref. 3] 

4. The Kuiper Belt 

The Kuiper Belt is a disk thought to be composed icy planetesimal remnants 

beyond Neptune, and was first proposed by Kuiper in 1951. Because these remnants have 

such a high orbital periods and because the density of material in the solar nebula 

accretion disk decreases beyond Neptune, this material was unable to accrete into a 

planetary body. It has been postulated that the Kuiper Belt is responsible for supplying 

the low-inclination Jupiter-class comets. [Ref. 3] 
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III. DEFENDING THE EARTH AGAINST IMPACTS FROM 

LARGE COMETS AND ASTEROIDS. 

A. INTRODUCTION 

There are numerous illustrations of asteroid and comet impacts on Earth: 

meteorite craters, astroblemns, and certain circular geologic structures. Many hypotheses 

have been formulated to predict the consequences of a collision with a Near Earth Object 

(NEO) with the Earth. Damage could be localized to a small geographical area, result in 

regional political instabilities, or cause devastating climatic change, dwarfing the feared 

"nuclear winter" damage of a global thermonuclear war. Recent research into the effects 

of a collision have fairly well established the evidence for severe climate alterations. The 

best known and most extensively investigated impact occurred on the Yucatan Peninsula, 

at the boundary of the Carboniferous and Paleogeneous Ages, 65 million years ago, and is 

thought to have caused the extinction of giant reptiles of that time. The geochemical and 

paleontological record has demonstrated that a 10- to 15-km diameter NEO impacted the 

Earth with the force of 100 million megatons in explosive energy. [Ref. 1] The 

frequency of such impacts is small but not insignificant. 

The most energetic event of this century occurred over the Tunguska Valley in 

1908. It was surmised that this event resulted from the break-up of a chondritic asteroid 

at an altitude of several kilometers. The explosive yield was originally estimated at 15- 

20 megatons (Mt) of TNT, although recent estimates have placed that number as high as 

48 Mt, which leveled approximately 2,000 square kilometers of forest. [Ref. 9]. 

There are numerous ways of deflecting an Earth-crossing asteroid or comet. One 

involves a direct, kinetic energy type weapon, which imparts a change in momentum to 

the assailant object. A second way of mitigating the threat from an EC A or comet is 

through the use of nuclear explosive devices. Issues of great importance surrounding the 
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use of a nuclear device on a potential colliding object include: 1) estimating the 

radiation energy transfer to its surface; 2) maximizing radiation energy transfer; 3) 

understanding the hydrodynamic motion and mass blow-off from the surface, and the 

resultant momentum transfer; and 4) gaining knowledge of the various ways the object 

may be disrupted due to fracture or fragmentation.    [Ref. 9]. Regardless of whether one 

of these, or some other method, is chosen, the several basic issues must be thoroughly 

understood before an attempt is undertaken to deflect an object. 

The most .»kely candidate for mitigating the danger of an Earth impact is a rocket- 

delivered nuclear explosive. Nuclear explosive devices possess the highest concentration 

of energy, and can be manufactured with warheads yielding 100 Mt or more. A 

thermonuclear charge with a yield of 1 Mt has a mass of the order of 0.5 ton. Of interest 

is the fact that to obtain the equivalent energy by impact of a body of the same mass 

requires an impact velocity of approximately 4,000 km/s. [Ref. 9]. 

Simonenko et al. [Ref. 9] presents a list of problems that must be considered 

before the development of a defensive system could be undertaken. 

1. Assessment of the number of dangerous cosmic bodies and their probability of 

their collision with the Earth. 

2. Assessment of the time required to detect and identify them as dangerous. 

3. Understanding of the object's motion in the immediate vicinity of the Earth, 

penetration of the atmosphere, and detailed dynamics during collision with the Earth, 

with concomitant assessment of the local and global consequences of the collision. 

4. Assessment of the required effect on the astral assailant, whether it be 

deflection or fragmentation. 

5. Consideration of the needed nuclear devices, delivery means, and optimal 

regime of action. 

6. Assessment of consequences of collision with fragments of an object that had 

been fractured by a nuclear explosive. 
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7. Consideration of ecological consequences for the Earth and space environment 

of nuclear explosions in space. 

The most important question from a technical viewpoint is to ascertain if it is 

feasible to significantly alter the trajectory of an EC A or comet by detonating a nuclear 

explosive near the surface. Equally as important is the ability to calculate the effects of 

such a weapon on the extraterrestrial body. Many characteristics of nuclear explosions 

are predictable and well defined. For example, detonation of a 100-kt device known as 

"Sedan" produces a crater 370 m in diameter and 100 m in depth. Significant differences 

may result by varying the nuclear explosion yield, distance to the target object, the object 

dimensions, material composition of the object, and the design of the nuclear device. 

Depending upon the interplay of these variables, the resultant explosion can result in 

fragmentation, crushing, or deviation of the target object from its initial trajectory. [Ref. 

9]. 

Table 3 presents the yield vs. mass for nuclear explosive devices. This shows that 

the yield from current nuclear technology, that which can be launched with existing 

rocket technology, is capable of deflecting small objects. The nuclear device can be 

scaled upwards, perhaps an order of magnitude or more, while preserving special 

characteristics. In this case, modification would not require further testing. [Ref. 9] Of 

particular importance to the deflection of an asteroid are the specific physical 

characteristics of the body. These include shape, material composition, and physical 

stability of the object. Maximum effectiveness for deflection may require several nuclear 

devices detonated in a carefully determined sequence, or one device of special 

configuration. In addition, special measures can be taken to minimize the radiation 

contamination of the asteroid fragments, particularly important if it is determined that the 

fragments from such an explosion will continue towards impact with Earth. 
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Yield Mass 

lMt 0.5 ton 
10 Mt 3 to 4 ton 
100 Mt 20 to 25 ton 

Table 3. Yield vs. Mass for Nuclear Devices [Ref. 9] 

Finally, an area of study which needs additional study is that of the explosion of 

nuclear devices in space. Major differences include absence of atmosphere, 

commensurability of the object's dimensions with linear scales of the phenomenon, 

complexity of object shape, relatively weak gravity, and exotic material composition. 

[Ref. 9] 

B. DEFLECTION CONSIDERATIONS 

There are two main areas of interest in the mitigation of a Near-Earth Object 

(NEO): 1) causing the threatening object to break up, and 2) altering the trajectory of 

the object. There are several issues surrounding these areas which concern the scientific 

community with regard to deflecting or fragmenting a NEO sufficiently to avert collision 

with Earth. First, is there a limitation to the size of asteroid that can be deflected, given 

today's technology. Secondly, given the option, what is the most effective way to deflect 

these astral assailants to ensure, with a reasonable degree of certainty, that they will miss 

the Earth. 

1. Size Limitations 

Simonenko et al. [Ref. 9] has estimated the maximum dimensions of an object 

that can be influenced by a nuclear explosion as follows. Assume a nuclear explosion 

occurs on the surface of an asteroid having mass ma and radius Ra. Assume the mass m 

of the material ejected by the explosion is small compared with the mass of the object. 

The mass of material ejected from the body has a distribution of velocities, but to 

simplify the estimation, it is assumed that all the ejected material has the same velocity, 
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the average of all the actual velocities, vm. This varies depending upon the explosive 

yield and material properties of the object. 

Assuming m«ma, conservation of momentum shows 

mv„ = maAv„ (3) a       a 

where v« is the velocity of the ejected material an infinity and Ava is the velocity increase 

of the object as a result of the explosion. In similar fashion, conservation of energy 

shows 

rmma    mvm     mv«,     ma(Av0) (4) 

Ra   
+   2    ~   2 2 

where G is the universal gravitational constant.   Combining Eqns. (3) and (4) gives 

-      -    .    2Gma (5) 
Voo = vm\\-—2 . 

Examination of Eqn. (5) shows that if an asteroid is of sufficient mass, and given 

the above limitations on ejected material velocity, ejected material will simply fall back 

to the asteroid or remain in orbit around it, resulting in the object resuming its original 

velocity. To approximate the maximum radius and mass that could be deflected, Eqn. (5) 

solves for RaCrit with v» = 0. At this radius, all attempts to deflect the object are 

impossible by this method of explosion. The critical radius is defined as 

'~1~ (6) 
^■acril       ^mi %npaG 

where pa is the average density of the object and 

™a=fapa. 
(7) 

Finally, the critical mass is given by 

v 3    ^T~ (8) 
™acri, 2G \ 8npaG 
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Knowles and Brode have published data showing that a conservative estimate of the 

ejection velocity, using currently available technology, is approximately 100 m/s. Using 

and average density of 5 g cm"3 for the assailant object, an average ejection velocity of 

100 m s"1 for current technology, the critical mass and radius for the object are 

approximately 5 x 1018 kg and 60 km, respectively. Asteroids with masses or radii 

greater than these values cannot be deflected with current technology, regardless of the 

warning time involved. [Ref. 9] 

2. Directional Considerations 

The orbit perturbation requirements to deflect objects from collision with the 

Earth are an important consideration when planning a deflection mission. Two scenarios 

are considered: (1) A short time-scale deflection where equations of motion are 

linearized, and (2) A long time-scale deflection, using orbital equations of motion. These 

two scenarios are developed fully below, the results of which will be used to generate the 

change in velocity requirements for a hypothetical asteroid. 

a. Short Time-Scale Deflection 

The short time-scale deflection scenario is easily developed using 

rectilinear equations of motion. This is valid if the time scale involved is short compared 

to the orbital period, P. To prevent a collision, a change in velocity must be imparted 

orthogonal to the flight path of the object. The displacement, 5, that must be achieved by 

a change in velocity, Av, is 

5 = Av • t. (9) 

Assuming the object were on a path such as to intersect the center of mass 

of the Earth, the object must be deflected a minimum of one Earth radius. This provides 

no margin of safety, however, and therefore, taking the minimum acceptable distance to 

30 



be two Earth radii, the minimum change in velocity required to deflect a potential threat 

is given by 

2RQ     147.6ms-1 (10) 
Av 

t t, days 

b. Long Time-Scale Deflection 

For a deflection to be accomplished over a longer period of time, the 

equations of motion cannot be simplified to the rectilinear case and the two-body orbital 

mechanics equations of motion apply. There are three directions with respect to the flight 

path which will cause an orbiting body to deviate from the original orbit: (1) orthogonal 

to the flight path, along the line parallel to the angular momentum vector, (2) orthogonal 

to the flight path, in the plane of the orbit, and (3) along the flight path, in the orbit plane. 

A two body circular orbit is assumed to simplify the problem. 

Given a longer response time, the best deflection direction may not be 

orthogonal to the flight path direction, as in the short time-scale deflection. Each option 

is assessed below to determine the optimal deflection direction. 

(1) Out of plane, orthogonal to flight path. A change in velocity 

made orthogonal to the orbit plane, as shown in Figure 10, 

results in a change of inclination according to 

Av = 2v sin —, 
2 
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Figure 10. Deflection Out of Plane, Orthogonal to Flight Path. 

where v is the orbital speed of the object and i is the required inclination change. The 

maximum displacements occur n/2 and 37i/2 around the orbit. The orbital period remains 

unchanged. Using a small angle approximation gives 

Av = vi = v — 
r 

(12) 

where 5 is the amount the body's orbit will be deflected nil past the point of the 

deflection, and r is the radius of the object's orbit around the Sun. Finally, substituting in 

for the orbital velocity in terms of orbital period, P, gives 

Av = 271 —. 
p 

(13) 

Conversely, the maximum distance the orbit may be changed is 

found using 

8_sAv- 
(14) 

2TT 

The minimum change in velocity required to deflect the asteroid two Earth radii is given 

by 
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Av = 
4R.U (15) 

For a circular orbit at 1 AU, the minimum change in velocity required to achieve the 

required deflection is approximately 2.54 m/s and should be imparted 90° prior to the 

expected impact point in the asteroid's orbit. 

(2) In plane, orthogonal to flight path. The change in velocity 

required to deflect an object using a deflection in the asteroid's orbital plane, orthogonal 

to the flight path is found in a manner similar to (1), above. As before, the orbital period 

remains the same. The asteroid is displaced along it's track with the maximum 

displacement occurring n/2 and 37i/2 around the orbit, as shown in Figure 11. The 

maximum deflection 

Figure 11. Deflection In Plane, Orthogonal to Flight Path. 

is 

max = 

2AvP (16) 
7t 

and the minimum change in velocity required to deflect the asteroid two Earth radii is 

given by 

33 



Av = —^- 
P 

(17) 

The required change in velocity for this case is approximately 0.635 m s"1. 

(3) In plane, along flight path. A deflection along the flight path, 

shown in 

Figure 12. Deflection Along Flight Path. 

will result in a net increase or decrease in the orbital speed. If there is a net increase in 

speed, the point at which the deflection occurred will be the perihelion of a new orbit. 

Conversely, if there is a net decrease in speed, the deflection point will be the aphelion of 

a new orbit. Irrespective of deflection direction, the period of the deflected object's orbit 

will change. This change in period serves as the mechanism by which, over time, an 

object can be influenced so as to miss a collision with the Earth. The amount the asteroid 

is displaced during each orbit is directly proportional to the change in period of effected 

by the deflection. This is given by 

8!*™M=vAr. (18) 

The approximate displacement for a deflection along the flight path can be derived from 

the equations for the specific mechanical energy of a body, 

E = JL_£=-^ (19) 
2      r      2a ' 

the orbital period of a body, 
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T = 2K. 
(20) 

and the circular velocity for an orbit, 

fir (2i) 
v 

V a 

Taking the derivative of Eqn (19) and substituting v2 for u/a gives 

Av _ &a (22) 
v      2a' 

while taking the derivative of Eqn. (20) and resubstituting in for T gives 

*„    ^ Atf (23) 
A7 = 37—. v   ' 

2a 

Substituting (22) and (23) into (18) gives the maximum deflection per orbit, in terms of 

the original orbital period of the asteroid and the change in velocity imparted to the 

object, as 

Sper_orA,,=37Av. (24) 

So, the change in velocity required to deflect an object two Earth radii is approximately 

Av = ^ (25) 
3nT 

where n is the number of orbits prior to impact. If n = 1, the change in velocity is 

approximately 0.135 m s"1. This is better than either case (1) or (2). If the impact can be 

predicted as much as a decade in advance, the change in velocity required to deflect the 

asteroid is reduced to 1.35 cm s"1. This is an order of magnitude less than case (2) and 

two orders of magnitude less than case (1) and is an achievable quantity in terms of 

technological feasibility. 
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IV. DEVELOPMENT OF HYPOTHETICAL ORBITS 

A. INTRODUCTION 

In order to accurately test the sensitivity of the change in velocity requirements 

presented in section III, accurate orbital parameters for hypothetical asteroid objects were 

first developed. This section first describes the coordinate systems used and the 

characteristics of circular, elliptical, parabolic, and hyperbolic orbits. Next, this section 

describes the process by which the Earth's position in heliocentric coordinates, at any 

given time, are used to generate the heliocentric coordinates of an intersecting asteroid 

orbit. The size, shape, and inclination of the asteroid orbit are variables defined by the 

user with the only limitation being that the two orbits intersect. MATLAB scripts which 

generate these procedures are contained in the Appendix. Orbits can be generated for 

circular, elliptical, parabolic, or hyperbolic trajectories. 

Development of hypothetical orbits followed a rigorous routine allowing for 

repeatability of the work done while minimizing the workload for completing multiple 

simulations. The methodology and theory used in the development of the MATLAB 

scripts are discussed below. 

B. COORDINATE SYSTEMS 

The first requirement for describing an orbit is to define a suitable reference 

frame. In many cases this means finding an appropriate inertial coordinate system. For 

orbits around the Sun such as planets, asteroids, and comets, the heliocentric-ecliptic 

coordinate system is often used. Satellites in orbit around the Earth use the geocentric- 

equatorial system. [Ref. 10] Another convenient coordinate frame used for describing the 

orbit of a body is the perifocal coordinate system. Each rectangular coordinate frame is 

defined by specifying the origin, the fundamental plane (i.e. the X-Y plane), and the 

direction of each axis. In developing the hypothetical orbits used for the simulations, the 
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heliocentric-ecliptic and perifocal coordinate systems were used extensively. These are 

described in detail below. 

1. Heliocentric Ecliptic Coordinate System 

The heliocentric-ecliptic coordinate system, as the name implies, has its origin at 

the center of the Sun. The letters XYZ describe the three principle axes as shown in 

Figure 13. The fundamental plane, the X-Y plane, coincides with the ecliptic, which is 

the 

first   day 
at   summer 

v«r»al   «qumox 
direction 

(Seasons    are   for    Northern   Heniiphtf« } 

Figure 13. The Heliocentric-Ecliptic Coordinate System. From Ref. 10. 

plane defined by the Earth's orbit around the Sun. The line of intersection of the Earth's 

equatorial plane and the ecliptic plane (XY) where the Sun crosses the equator from south 

to north in its apparent annual motion along the ecliptic is known as the vernal equinox. 

When the vector from the Earth to the Sun (X-axis) points towards what is now 

approximately the constellation of Pisces, it coincides with the vernal equinox, also 

known as the first day of spring. The Y axis is 90° from the Z axis in the direction of the 

Earth's rotation around the Sun. The Z axis completes the right-handed coordinate 

system. [Ref. 10] 

2. Perifocal Coordinate System 

The perifocal coordinate system, shown in, Figure 14, is one of the most useful 

coordinate systems for describing the motion of a body. The letters PQW are used to 
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describe the three principle axes. The fundamental plane, the PQ plane, is in the plane of 

the body's orbit and the origin is at the focus of the primary body, in our case the Sun. 

The P axis is in the direction of perihelion while the Q axis is 90° from the P axis in the 

direction of rotation. The W axis completes the right-handed coordinate system. 

Figure 14. Perifocal Coordinate System. 

C. CLASSICAL ORBITAL ELEMENTS 

Five classical orbital elements, also known as Keplerian elements, are sufficient to 

describe the size, shape, and orientation of an orbit. A sixth element is required to locate 

a body in that orbit. 

There are many ways of locating the position of a body in the orbit plane which 

may be substituted for time of perihelion passage. 

1. True anomaly at epoch, v0, is the angle in the plane of the body's motion 

measured from perihelion to the position to the body at a given time (epoch). 

2. Argument of latitude at epoch, Uo, is the angle in the plane of the orbit between 

the longitude of the ascending node and the radius vector to the body at a given time. If co 

and v0 are both defined then 

Uo=co+v0. (26) 
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If there is no ascending node, as in an equatorial orbit, then both © and UQ are 

undefined. 

3. True longitude at epoch, 10, is the angle measured between X and r, the radius 

vector to the body, measured eastward to the ascending node, if it exists, and then in the 

orbital plane to r. If Q, co, and v0 are all defined, then 

l0=Q+co+Vo=n+v0=Q+Uo. (27) 

Two other terms used in the descriptions of orbits are direct, or prograde, and 

retrograde. Direct means easterly, in accordance with the right-hand rule, and is the same 

direction in which the Sun, Earth, and most of the planets and their moons rotate on their 

axes and the direction in which all planets rotate around the Sun. A retrograde orbit, as 

the term implies, is the opposite of direct. Table 4 provides a summary of the various 

types of orbits and the orbital parameters that result. 

Parameter Circle Ellipse Parabola Hyperbola 
Eccentricity e=0 0<e<l e=l e>l 
Energy -u/2a<0 -u/2a<0 E=0 mu/2a>0 
Period P=27i/n P=27r/n - - 

Anomaly Undefined or 
arbitrary 

Eccentric: 
v    A + eY      E 

tan- =       tan— 
2    \\-e)       2 

Parabolic, D 
v       D 

tan„ -   ,— 
2     JTq 

Hyperbolic, F 
.    v    fl+eV     ,F 
tan-=       tanh— 

2    \l-e)          2 

Table 4. Keplerian Orbits 

D, DERIVATION OF FORMULAE 

1. Procedure 

a.  Orbital Elements From r and v 

Conversion from position and velocity vectors to orbital elements is done 

using standard procedures. For the purposes of this example, the Earth's orbital 

parameters are being determined from position and velocity vectors. 
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First the angular momentum is determined. From the relative form of the 

basic two-body equation 

r =-~3-r H - (28) 
r3 

Cross multiplying both sides by the position vector, r, gives 

- * . - Ü - (29> 
r3 rxr +rx—r . 

Expanding this equation, one then finds the angular momentum 

h = rxv = constant. (30) 

The vector pointing to the node is then calculated using 

n=Kxh (31) 

where K is the unit vector in the Z direction. If the magnitude of the node vector is zero, 

the orbit is in the fundamental plane. The MATLAB script used to calculate this vector 

has a filter to set the vector equal to zero if the magnitude is less than lxl 0"5. 

Next the eccentricity vector is calculated with 

„     1 
e = — 2        H    _ 

v  — — jr-(r-v)v 
(32) 

The magnitude of this vector provides the eccentricity. It is important to realize that this 

vector is zero for circular orbits. o 

The semi-latus rectum, p, is calculated 

h2 (33) 
P = T 

as are the semi-major axis 

p (34) 

and the radius at aphelion and perihelion 
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"    \-e,p     l+e- 

Once the size and shape parameters have been determined, all that remains 

is to find the orientation of the Earth's orbital plane and the position of the Earth in that 

orbit. First, the inclination is found with 

~    h-K (36) 
cos(z) =    _    . 

h 

There is no need to check for angle ambiguities as the inverse cosine always returns an 

angle between 0° and 180°. 

Next, the longitude of the ascending node, which varies from 0° to 360° 

must be determined. By definition, the Earth is in the mean ecliptic and the inclination is 

zero deg. By convention, the longitude of ascending node is defined to be zero deg; there 

is no real "ascending node". However, due to small perturbations in the Earth's orbit 

around the Sun, the center of mass of the Earth deviates out of the mean ecliptic to what 

is known as the true ecliptic. As a result, when there are instantaneous components of the 

position and velocity vector normal to the mean ecliptic, very small, but calculable values 

for inclination can be found. Also, a value for the longitude of ascending node can be 

found. If the instantaneous position and velocity vectors lie in the plane of the ecliptic, 

the longitude of ascending node and inclination are zero deg. and the only rotation is that 

of the argument of perihelion. As mentioned previously, orbits aligned with the 

fundamental plane, in our case the ecliptic, have no node vector and the longitude of the 

ascending node is undefined. However, a value for the majority of orbits is obtained from 

,™    I'* (37) cos(Q) = Fr-. ' 
\I\\n\ 

In this case a quadrant check must be conducted and if the dot product of J and n is less 

than zero, then Q must lie between 180° and 360°. 
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The argument of perihelion, which also varies from 0° to 360° is 

calculated. Again, this value is undefined for circular orbits and orbits in the ecliptic 

because perihelion does not exist for the former and there is no node vector in the later. 

/   N    "•« (38) COS(C0) = pjp. 

Angle ambiguities are resolved by computing the dot product of K and e. If this value is 

less than zero, then perihelion is below the ecliptic and the argument of perihelion is 

between 180° and 360°. 

The final classical orbital element is the true anomaly at epoch, which can 

vary from 0° to 360°. As mentioned previously, the true anomaly is the angle in the orbit 

plane measured from perihelion to the Earth's current position. The true anomaly is then 

/ N    ^ (39) cos(v) = FjR. 

The correct quadrant for the true anomaly is found from the dot products of r and v. If 

the dot product is less than zero, then the true anomaly is between 180° and 360°. 

b. Singularity Solutions 

Several special cases must be considered, especially when calculating 

values for the orbital elements using a computer routine. The first occurs when die 

orbital plane is the same as the fundamental plane. This is especially relevant to the orbit 

of the Earth around the Sun. By definition, the Earth is in the ecliptic, the inclination and 

longitude of ascending node are zero and the normal equation to calculate the argument 

of perihelion cannot be used. However, the instantaneous position and velocity vectors 

may contain small components out of the plane of the mean ecliptic. There are small 

values for inclination and longitude of the ascending node. To obtain the required 

accuracy, these angles are included when calculating the asteroid's orbit. Appropriate 
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filters handle the case when the Earth's position lies exactly in the mean ecliptic, and the 

inclination and longitude of ascending node are zero. 

These singularities are removed by using the true longitude of perihelion, 

TUtrue, which combines Q. and ©. It is found through 

I-e (40) 

Ie 
cos(co,rac) = 

which is valid for elliptical orbits which lie in the ecliptic. Again, a quadrant check is 

necessary and is found using the dot product of J and e. If this value is less than zero, 

the true longitude of perihelion is between 180° and 360°. 

c. Orbital Anomaly Determination 

There are several other useful formulas that must be derived prior to 

writing script files for the plotting of orbits and calculation of orbital parameters. First, 

for elliptical orbits, such as those of the Earth, EC As, and short-period comets, formulas 

for determining the eccentric anomaly and the true anomaly prove quite useful. Figure 15 

shows an x,y Cartesian coordinate system centered at C. F is the focus of an ellipse, in 

this case the Sun. An auxiliary circle of radius a with center C is constructed. P is the 

location of the Earth in its orbit about the Sun and Q is the point where the perpendicular 

to the semi-major axis intersects the auxiliary circle. The angle E is the eccentric 

anomaly and v is the true anomaly of the point P. 
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Figure 15. Orbital Anomalies for Elliptic Motion 

The x and y coordinates of the ellipse can be expressed in parametric form as 

x = acosE y = bsinE. (41) 

for the coordinate system centered at C, shown above. If the focus is selected as the 

center of the coordinate system, the radial position of the point P can be expressed in 

terms of E using the general form of for the radial position of an ellipse with the origin at 

the center 

r = a - ex (42) 

so that 

r = a(l - e cos E). (43) 

Comparing this to the polar equation of the ellipse 

a{\-e2) (44) 
r = -  

1 + ecosv 

the identities for true anomaly and eccentric anomaly are obtained as 

cosE-e _     e + cosv 
cosv = 

1 - e cos E 
cosE 

1 + ecosv 
(45) 

The true anomaly for the body is obtained by solving Eqn. (44). 

arccos if*-. \e\r 

(46) 

Another identity, Gauss' law, provides a useful relation between v and E. 
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1 1 + e       1 (47) 
tan2v-VT^ttB12£- 

Because 1/2 v and 1/2 E are always in the same quadrant, there is no angle ambiguity to 

resolve when solving this form of the equation. 

2. Determination of r and v From Intersecting Orbit Parameters 

From a given orbit and the position of a body within that orbit, a second orbit can 

be constructed which intersects the first orbit. The location of a body within the second 

orbit which intersects the body in the first orbit is specified by the formulation of the 

solution. Values for semi-major axis, eccentricity, and inclination are variables and can 

be any value with the only limitation that the two orbits must have at least one point of 

intersection. Finally, the position and velocity vectors in the new orbit at the point of 

intersection are calculated. These position and velocity vectors are in perifocal 

coordinates. The detailed procedure for calculating these vectors is presented below. 

a. Circular, Elliptical, and Hyperbolic Orbits. 

The polar equation for an ellipse 

a(\-e2) (48) 
r = -  

1 + ecosv 

can be used to solve for the true anomaly at epoch. The magnitude of r in this equation is 

the magnitude of the Earth's position vector at epoch. Once the true anomaly at epoch is 

known, the position vector in the perifocal coordinate system can be determined using 

r = r cos vP + r sin vQ (49) 

where the magnitude of r is once again the magnitude of the Earth's position vector and 

epoch. 

Differentiating Eqn. (49) in this "inertial" perifocal frame gives 

v = F = (j cosv - rv sinv)P + (r sinv + rv cosv)Q. (50) 
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Substituting in 

•  ft ■       •  K      ^ (51) 
r = J—esinv rv = J—(1 + ecosv) 

gives 

/7T . (52) 
v =   — [-sinvP + (e + cosv)Q] 

b. Parabolic Trajectories. 

The semi-major axis of a parabolic orbit is undefined. If the desired orbit 

is parabolic in shape, the parameter,/?, is substituted for the semi-major axis. The polar 

equation of the parabola is then 

,._      P (53) 
1 + cosv ' 

This equation is solved for v, as discussed previously. The formulas for 

calculating the position and velocity vectors in perifocal coordinates are then identical to 

the elliptical case discussed previously. 

3. Orbit Rotations 

Rotations between coordinate frames are accomplished using Direction Cosine 

Matrices (DCMs). Coordinate rotations may be accomplished by any number of 

methods. One common method of conducting coordinate rotations is through a 3-1-3 

rotation: A rotation about the 3-axis, followed by a rotation about the new 1-axis, and 

finally a 3-rotation about the new 3-axis. And example, shown in Figure 16, converts 

from perifocal coordinates to Heliocentric-ecliptic coordinates. The rotation matrices as a 

function of angle of rotation, a, are presented below. The subscript associated with each 

transformation is the axis about which the rotation is to be accomplished. 
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C(a): 

C,(a) = 

1       0 0 

0    cosa     sin a 

0   -sina   cosa. 

cosa     sina    0 

-sina    cosa    0 

0 0       1 

(54) 

(55) 

Transforming an orbit expressed in perifocal coordinates to heliocentric 

coordinates is conducted through the following formulations: 

rUK = C3(co)Q (i)Q ifl)rPQW. 

vUK = C3 (a )C, (z)C3 (n)vPOIV. 

(56) 

(57) 

Figure 16. Coordinate Transformations. From Ref. 10. 
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V. CASE STUDIES. 

A. INTRODUCTION 

Two tests were conducted to analyze the effects of orbital perturbations on an 

assailant asteroid. The magnitude of the velocity applied, is the change required along the 

flight path, to change the orbital period of a circular orbit such that the change in position 

after one orbit is equal to two Earth radii. This magnitude is approximately 13.5 

cm/sec/orbit. The first used a solar system simulation modeling program called Dance of 

the Planets. [Ref. 4] This program, described in further detail below, allows the user to 

input hypothetical objects into a relatively high fidelity simulation of the solar system. It 

includes gravitational models for the Sun and all of the planets. Objects can be imported 

into the program using their orbital elements or their position and velocity vectors at a 

given time. The model then calculates new orbital positions and velocities for each body 

included in the model using a full gravitational model. The simulation accurately 

computes both forward and backward in time. Although the program provides a 

reasonable model visualization, an inaccuracy was discovered during testing which 

prevented importing of position and velocity vectors of sufficient accuracy for valid tests 

to be conducted. This inaccuracy is demonstrated and explained in section 7 of this 

chapter. The discussion focuses on the procedure used to generate the desired asteroid 

vectors. This would prove useful for follow-on research should the program be modified 

to provide the required accuracy. 

The second method used to evaluate sensitivity of deflection distance and 

direction to variations in orbit eccentricity and size (semi-major axis) consisted of a 

relatively simple model to determine miss distance based on the asteroid's mean anomaly, 

M, and mean motion, n. The position and velocity vectors at some time prior to collision 

were calculated, new orbital elements determined, and the new position at the original 
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time found. The distance between the center of the Earth's orbit and the asteroid's orbit 

was then calculated. The effect of varying specific orbital parameters while keeping the 

magnitude of the change in velocity constant were analyzed. Parameters varied were 

orbital eccentricity, semi-major axis, and deflection direction. 

B. DANCE OF THE PLANETS 

1. Hypothetical Orbit Determination 

The purpose of this section is to present the process used to calculate asteroid 

object orbital elements and heliocentric coordinates from the Earth's heliocentric 

coordinates. The position and velocity vectors obtained are the position of the asteroid in 

its new orbit around the sun in heliocentric coordinates. This is exactly the same position 

as that of the Earth, hence collision. The asteroids velocity vector is that vector which 

meets the size and shape requirements dictated earlier in the orbit development process 

and is the asteroid's instantaneous velocity vector at collision. These vectors are then 

imported into Dance of the Planets at the epoch for which the Earth's original r and v 

were obtained. The orbit was then propagated backwards in time. New velocity vectors 

with a delta-v applied were calculated and imported into the program. These new vectors 

were propagated forward to determine if collision had been averted. The procedure, 

summarized here, is described in detail in the sections which follow. 

a. First, the Earth's orbital elements are calculated from r and v. 

Specifically, true anomaly, v, is required so that the position in the 

orbit is known. 

b. The asteroid's orbit size, shape, and inclination (a, e, and i) are 

selected. 

c. The asteroid's orbital elements are calculated in perifocal coordinates. 

d. The asteroid's orbit in perifocal coordinates is rotated, using a 3-1-3 

rotation, to make it coplanar with the Earth's orbit. The eccentricity 
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vectors are aligned. This makes the Sun and the two orbit's 

perihelions collinear. 

e.   A second 3-1-3 rotation is performed to obtain the desired inclination 

and align the two r vectors. The first 3-rotation is through an angle 

Vearth and aligns the asteroid's perihelion with the position of the Earth 

in its orbit. The 1-rotation inclines the orbit to the desired value. The 

final 3-rotation, through an angle -Vasteroid, aligns the asteroid with the 

Earth's current position. 

2. Initialization. 

The first step in the development of hypothetical orbits and completing the 

simulation of Near Earth Objects (NEOs) was to select a desired date and time for the 

impact. For the purposes of this research, the date chosen was January 01,2007 at 00:00 

UT. This date was selected as it gave a real world flavor to the problem, approximately 

one decade would elapse from the time of discovery to the time of impact. Universal 

Time (UT) is the standard time in the time zone centered on zero degrees longitude in 

Greenwich, England. UT is used for calculating where an object is in the sky relative to 

the horizon at a particular location. 

Next the position and velocity vectors for Earth at the desired impact date were 

obtained from Dance of the Planets. The operator's manual contains an excellent tutorial 

and provides the information required to operate the program. Several preliminary steps 

must be completed prior to date initialization. The simulation is initialized from Space 

View. Second, from the main access screen, any planets that are to be excluded from the 

gravitational model are deselected. This is indicated by a zero in the on column next to 

the planet name. Returning to the simulation Space View, confirm the simulation pace is 

set to true time. This minimizes the elapsed time upon returning to the simulation after 
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initializing the date. In addition, this also minimizes the change in planetary position and 

velocity vectors during the time from initialization to reselecting the main access facilities 

display where the Earth's vectors are obtained. Finally, enter the desired date. Digital 

hours and minutes appear at low simulation paces. Local time, determined by site 

longitude, is shown unless time is offset. 

Immediately after entering the desired date, reenter the main access screen. For 

each planet selected, Dance of the Planets calculates the period, the distance to the Earth 

and Sun in astronomical units (AU), heliocentric longitude (calculated and simulated), 

right ascension of the ascending node, declination, and apparent magnitude. The 

difference between calculated and simulated heliocentric longitude is that the calculated 

value is the position as determined from ephemeris equations while the simulated value 

gives the position in "simulator space." Comparison of the two values provides an 

accuracy check for the user between the ephemeris equations and the Dance of the 

Planets model. 

The instantaneous position and velocity vectors of the planets provide the 

essential information to describe dynamic state. With these datum the six orbital 

parameters of eccentricity, semi-major axis, right-ascension of the ascending node, 

inclination, argument of perihelion, and true anomaly, can be calculated. 

3. Constants 

The program provides the user with the option of obtaining the position and 

velocity vectors or the orbital elements at a given epoch. The display shows the 

calculated vectors for the planets in heliocentric coordinates, XYZ, as well as the epoch 

Julian date. Units for the position and velocity vectors are E6 km and km/sec, 

respectively. The epoch date is presented in the form 24ddddd.ffff and is reference to the 

epoch (equinox) of the year 2000 (J2000), as are contemporary star charts. Only Julian 

dates beginning with 24ddddd can be used, giving a 14,680 year window for simulations. 
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[Ref. 4] Mean planetary constants for epoch J2000 of the Earth are given in Table 5. 

Solar constants are shown in Table 6. 

Parameter Value 
Semi-major axis 

AU 
km 

1.000 001017 8 
149,598,023 

Eccentricity 0.016 708 617 
Inclination ~ deg. 0.000 000 000 
Long, of ascending node (Q) ~ deg 0.000 000 00 
Long, of perihelion (co) ~ deg 102.937 348 08 
True longitude (L) ~ deg 100.466 448 51 
Orbital period (P) ~ years 0.999 978 62 
Orbital velocity (v) ~ km/s 29.77859 
Equatorial radius (Re) ~ km 6378.137 
Gravitational parameter (u) ~ km3/s2 3.986xl05 

Mass (Me) ~ kg 5.9742xl024 

Rotation ~ days 0.997 269 69 
Inc. of equator to ecliptic ~ deg 23.45 
Density ~ gm/cm 5.515 

Table 5. Mean Earth Constants for Epoch J2000 

Parameter Value 
Radius of the Sun (Rs) ~ km 696,000.000 . 
1.0AU~km 149,597,870.0 
1.0 AU/TUsun ~ km/solar s 29.784 691 674 9 
Gravitational parameter (u) ~ km3/s2 1.327 124 28x10" 
1.0 TU ~ solar days 58.132 440 9 

Table 6. Solar Constants 

4. Orbital Element Selection 

The orbital elements selected for simulation, shown in Table 7, were selected 

from a list of all known ECA's given by Rabinowitz et. al. [Ref. 5] and [Ref. 7]. These 

were selected because they each have a point of close approach distance within 20 lunar 
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radii over the course of the next century, and because they are representative of each class 

of asteroid as well as a short-period comet. 

No. and Name H Approx. 
diamete 
r (km) 

Depth 
(AU) 

q 
(AU) 

a1 

(AU) 
e1 i1 

(deg) 

2340 Hathor 20.26 0.2 0.356 0.464 0.844 0.450 5.85 
4660 Nereus 18.30 1 0.092 0.954 1.490 0.360 1.43 
4179Toutatis 14.0 5 - 0.542 2.505 0.640 0.47 
Encke 9.8 - - 0.331 2.283 0.855 11.9 
Note: (1) Values used in the development of the hypothetical orbit 

Table 7. Selected Near-Earth Objects Used for Simulation Study. 

5. Asteroid Orbit Rotations 

Two series of 3-1-3 rotations are used to achieve the desired orbit. The first series 

of rotations transforms the position and velocity vectors from perifocal coordinates to the 

Earth's orbital plane. These angles were previously calculated and are the Q, i, co rotation 

angles. Because the true ecliptic is used, the Earth's orbit with respect to the mean 

ecliptic is found using the three rotations calculated in Eqns. (37), (38), and (39), 

inclination, longitude of ascending node, and argument of perihelion, respectively. 

Once the assailant object's orbit is coplanar with that of Earth, and the eccentricity 

vectors are aligned, a second 3-1-3 coordinate transformation is accomplished. This 

series of rotations serves two important purposes: (1) they rotate the orbit to the desired 

inclination, and (2) they align the position vectors of the Earth and the asteroid. 

The first 3-rotation, through the angle vearth, aligns the object's eccentricity vector, 

which points towards perihelion, with the Earth's position vector. The 1-rotation, about 

the eccentricity vector, effects the desired value of inclination. The final 3-rotation about 

the orbit normal, though an angle -Vasteroid, aligns the asteroid's position vector with the 

Earth's position vector. 

54 



6. Simulation 

Once the position and velocity vectors are calculated, they are inserted into Dance 

of the Planets as object vectors. The fictitious orbit, at epoch, is one having the same r as 

Earth but with a velocity vector as provided by MATLAB to provide the desired orbit size 

and shape. 

The simulation is run backwards in time to an arbitrary time. This will be the new 

start time of the simulation. At this point, the simulation is paused, and the new orbital 

elements are calculated for the asteroids current orbital set. These are not the same as the 

original orbit's parameters due to the influence of third bodies on the asteroid's orbit 

during the simulation period. Specifically, the influence of the Earth on the asteroid's 

orbit during the first month of the reverse simulation has a significant impact on the orbital 

parameters. 

Next, another MATLAB script file uses the current orbital parameters to 

recalculate the velocity vector of the assailant body for a desired delta-V applied to the 

body at a given time. This procedure is described in detail below. 

Finally, the simulation was run forward in time to determine if Dance of the 

Planets achieved the simulation accuracy required to show the deflection of the asteroid 

and determine if the calculated deflection is sufficient to avoid collision. The results are 

presented in the next section. 

All MATLAB scripts, presented in the Appendix, were written in modular fashion. 

Running the script from the main program accesses additional script files as required. 

Each file can also be run from the Command window by typing the function name with the 

appropriate arguments provided. Help files are provided for each function file. The 

MATLAB scripts also plot the Earth and asteroid orbits. Aphelion, perihelion, the 

position of each body in their orbits is indicated on the plots. 
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7. Results and Discussion. 

Following the development of the MATLAB function files and orbital 

development routines, a problem was discovered with the accuracy of files imported to 

Dance of the Planets. Data files used to import elements into the simulation are space 

delimited and of the form : 

Name x y z Vx      Vy      Vz       epoch 

The position coordinates were in units of E6 km and contained up to 5 decimal place 

precision. Velocity vector components were in km/sec and contained up to 6 decimal 

place precision. Epoch date was in Julian days and allowed inputs up to four decimal 

places. 

Importing a data file with this level of exactness would have been sufficient to 

accurately test the deflection hypothesis presented in section III. However, when data 

was imported, the values obtained were slightly different from the original file. Table 8 

show the result of importing the data file for asteroid 2340 Hathor. The file contained the 

consisted of the position and velocity vectors shown under Hathor, below, and was 

obtained by exporting actual position and velocity data from Dance of the Planets. The 

example column listed next to Hathor shows how the values differed following 

importation. 
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Ast. Hathor Example 

X 13.29207 13.29217 

y -75.41408 -75.41404 

z 0.02352 0.02351 

Vx 44.735765 44.735756 

Vy 19.744673 19.744721 

Vz -4.868622 -4.868622 

Table 8. Imported Asteroid's Altered Position and Velocity Vectors. 

The magnitude of the change between the desired values and the values as altered 

by Dance of the Planets is shown in Table 9. If the values had been imported correctly 

the position and velocity vectors would be identical. 

Asteroid Delta r (km) Delta v (m/s) 

Example 108.1665 0.1082 

Table 9. Position and Velocity Change from Original Orbit. 

While these errors were relatively small, they were of sufficient magnitude to 

impart significant errors at the initiation of the simulation and prevented precise and 

accurate testing of the theories; the magnitude of the change in velocity to be imparted to 

the asteroid was of approximately the same magnitude as the error generated by the 

program. Additionally, these errors were not consistent in magnitude or direction from 

one test to the next. The errors could not be biased out by altering the date of epoch for 

the simulation. 

Discussions with Terry Harmon of Applied Research & Consulting, Inc., one of 

the software developers for the program, lead to speculation that the problem may lie in 

the precision of the epoch currency. The program presents accuracies to one ten- 
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thousandth of a day, approximately eight seconds, while the accuracies required for the 

thesis testing was on the order of one second accuracy. In fact, although the epoch date is 

displayed out to four decimal place, the manufacturer believed the program accuracy to be 

somewhat less than this. 

The program is written in Pascal, and should the manufacturer make it available, 

the code could perhaps be modified so as to make it acceptable to conduct simulations of 

this type. Several simulations were conducted which did not require the importation of 

data files. These runs were very accurate and results were repeatable during multiple 

simulations. Overall, the program provides very accurate orbital positional data for 

predicting and visualizing solar system events. Without modification, however, the 

program is not sufficiently precise to conduct deflection simulations with changes of 

velocity on the order of 0.1 m/s. 

C. DEFLECTION RATIO SENSITIVITY TO ORBITAL PARAMETERS 

1. Introduction 

Since the original simulation program discussed in section B, above, was not 

satisfactory to test the deflection hypothesis, a simulation program was written in 

MATLAB which permitted the application of a given change in velocity to a variety of 

hypothetical asteroid orbits. The MATLAB scripts used are contained in Appendix C. 

The change in velocity was applied in the plane of the asteroid's orbit. The direction of 

the change in velocity was applied in five equal increments from along the flight path 

direction to the anti-flight path direction. As the answers were symmetrically similar, the 

directional range was altered to five equally spaced inputs from along the flight path to 

orthogonal to the flight path. These are depicted in Figure 17. 
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Figure 17. Deflection Directions With Respect to the Flight Path Vector. 

2. Variation in Orbital Period for a Circular Orbit 

The first sequence of tests applied a 0.135 m/s change in velocity to an asteroid 

with a circular orbit at 1 AU, inclined to the ecliptic. The Earth's orbit was modeled as a 

circular orbit in the ecliptic at 1 AU. The simulation calculated the orbital elements of 

the asteroid's orbits including the true anomaly. From those elements, the eccentric 

anomaly, mean anomaly, and mean motion were calculated. The orbital velocities at one, 

two, three, four, five, and ten years prior to collision were calculated, the desired change 

in velocity applied, and new orbital elements calculated. The entire procedure was then 

reversed. Finally, the asteroid's position at the original time was determined, compared 

to the Earth's position, and divided by the Earth's radius to determine a miss ratio in 

Earth radii. As expected, the asteroid missed by two Earth radii for the flight-path and 

anti-flight path directions. Results show that the miss ratio decreased by the sine of the 

angle between the flight path and deflection direction. At 45 deg., the miss ratio 

decreased to 1.4 Earth radii, while at 90 deg., there was no deviation detected. The 

magnitude of the deflection distances were symmetric about 90 deg. 
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3. Constant Radius of Perihelion 

To demonstrate the accuracy of the mathematical solution developed in Chapter 

IV, miss ratios were calculated for an asteroid orbit with an fixed radius of perihelion of 1 

AU. Fixing perihelion distance results in varying eccentricity and semi-major axis 

lengths. Change in miss ratio with change in eccentricity and change in semi-major axis 

are shown in Figure 18 and Figure 19, respectively. Increasing eccentricity dictates an 

it>.cn;a% in semi-major axis for a constant radius of perihelion. As such, the two figures 

lock -"eiy much the same. As the eccentricity increased from a minimum value of 0.0 to 

appioxvmately 0.2, the miss ratio increased from 2 Earth radii to approximately 4.2 Earth 

radii. Over this same variation, the semi-major axis increased from 1 AU to 

approximately 1.25 AU. As shown in Eqn. (24), the deflection distance varies linearly 

with the asteroids period. But, because the asteroids period varies with am, there is a 

relatively large increase in miss ratio  or increasing values of eccentricity. 

Eccentricity 90    67.5 45    22.5     0 
Deflection angle 

Weg) 

■4-4.5 

D3.5-4 

■ 3-3.5 

□2.5-3 

■ 2-2.5 

O1.5-2 

01-1.5 

■0.5-1 

SO-0.5 

Figure 18. Miss Ratio in Earth Radii vs. Deflection Angle vs. Eccentricity. 
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Figure 19. Miss Distance in Earth Radii vs. Deflection Angle vs. Semi-Major Axis. 

4. Variation in Eccentricity 

The effect of varying the eccentricity of the orbit while maintaining a constant 

semi-major axis length, shown in Figure 20, provided several interesting results. As the 

eccentricity increases and a is held constant, the perihelion distance decreases. The line 

of apsides must then rotate, increasing the true anomaly, to keep the collision distance at 

1 AU. The true anomaly increases approximately 5.7 deg. for each 0.1 increase in 

eccentricity. As the eccentricity increases, the miss distance decreases. The primary 

cause of this is the application of the change of velocity away from perihelion. The 

greatest deflections are achieved by applying the change in velocity at perihelion. The 

least efficient deflections are at aphelion. In this case, the change in velocity is applied 

approximately 91 deg. past perihelion for eccentricity of 0.01. This increases to 

approximately 102 deg. past perihelion at e = 0.2. The gradient of miss ratio with 

increase in eccentricity increases significantly beyond e = 0.2. This shows the importance 

of applying a given change in velocity at perihelion. 
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Figure 20. Miss ratio vs. Deflection Angle vs. Semi-Major Axes. 

5. Conclusions 

The results presented above are consistent with the mathematical conclusions 

presented in Chapter IV. One of the most important factors in maximizing the miss ratio 

is targeting the change in velocity to occur at perihelion. This is especially important for 

high eccentricity orbit with a semi-major axis close to that of the Earth. Much larger 

changes in velocity are required in these scenarios the further from perihelion the change 

is to occur. 

62 



VI. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

The issues surrounding ECA mitigation necessitate a wide variety of 

professionals, each with differing areas of expertise, form a project team to formulate the 

most feasible solution. This paper, for the Naval Postgraduate School and the Space 

Warfare Center, is the genesis of another small portion of that project team. Although in 

its infancy, this program, because of the unique composition of its members, can 

contribute unique and meaningful contributions to that effort. 

This paper serves several important purposes. First, it summarizes a few of the 

important issues involved in planetary defense and serves as a primer to helps to gain an 

understanding of ECAs. Secondly, it serves to develop and analyze the sensitivity of 

deflection angle and various orbital parameters to miss ratio. Most importantly, it 

identifies areas for further research and the continuation of this important problem. 

Dance of the Planets is not sufficient to serve as a model for the purpose of testing 

deflection hypotheses. The errors induced into orbital elements or vectors when 

importing data are of sufficient magnitude to prevent accurate analysis of results. Should 

the source code become available, increasing the precision used for calculations may 

solve this problem. This is not to say, however, that the program is without merit. Used 

as a visualization tool, it provides an extremely flexible and accurate model with which to 

observe intercept geometry. 

The variation of miss ratio with deflection angle, eccentricity, and semi-major axis 

changes was analyzed. Deflection along the flight path achieve the greatest miss ratios. 

Position in the orbit also play an important role in the magnitude of the miss ratio. For 

eccentric orbits, deflection at perihelion is important as miss ratio is fairly sensitive to 

true anomaly. As true anomaly at deflection increases, the miss ratio decreases. This a 
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direct result of the deflection being applied at further angular distances from perihelion 

resulting in less of a change in period for each asteroid orbit. 

B. FURTHER RESEARCH OPPORTUNITIES 

There are three main areas in the asteroid mitigation problem which would benefit 

from additional research. First, a complete engineering and mathematical problem 

formulation should be accomplished. Expanding the scope of the current investigation to 

include a review of the state-of-the-art in change in velocity delivery options, intercept 

trajectory optimization, and weapons technology. 

Second, asteroid orbit determination accuracy versus the change in velocity 

required to mitigate a collision should be researched. The accuracy of ephemeris data is 

extremely important when calculating required changes in velocity and deflection angle. 

The relationship between the two should be determined to ensure that the proper 

mitigation steps are taken. 

Lastly, the formulation of the sensitivity model developed in this paper should be 

expanded to include gravitational perturbations and solve the problem using numerical 

integration techniques. A high fidelity model may provide additional insights into the 

sensitivity of miss ratio to deflection angle. 
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APPENDIX. MATLAB SCRIPT FILES 

This appendix contains the MATLAB function files constructed during the 

research of the asteroid mitigation problem. Section I contains the scripts which calculate 

a hypothetical asteroid's position and velocity vectors based on the current position and 

velocity of the Earth. Demo.m calculates all data by accessing individual script files. In 

Demo.m the user inputs the Earth's position and velocity vectors, rl and vl, respectively. 

Position is in 1E6 km and velocity is in km/sec. For an elliptical orbit, the user inputs into 

elip.m the desired semimajor axis length, eccentricity, and inclination. For a parabolic 

orbit, the user inputs into parab.m the desired semi-latus rectum, and inclination. 

Hyperbolic orbit script files were not developed. When demo.m is executed, available 

outputs include the asteroid's position and velocity vectors in heliocentric ecliptic 

coordinates and the asteroid's orbital elements. Current position in the orbit is output as 

true anomaly. 

Section 2 calculates the miss ratio, the ratio of the difference between the Earth's 

position and the asteroid's position one asteroid orbit following the imparted change in 

velocity to the radius of the Earth. The user inputs the Earth's position and velocity 

vectors, as discussed above, into Demol.m. The user also inputs into demo.m the 

magnitude of the change in velocity to be applied, normalized for one orbit, and the 

number of orbits prior to collision the change in velocity is to be applied. In elip 1 .m the 

user inputs are the desired semi-major axis, eccentricity, inclination for asteroid at the time 

of Earth impact. The program then calculates the remaining orbital parameters for the 

asteroid's orbit. From these, the eccentric anomaly, mean anomaly, and mean motion are 

found and used to find the asteroid's position at some specified number of asteroid orbits 

prior to collision. The change in velocity is then applied in five 22.5 deg. increments from 

along the flight path to 90 deg. to the flight path. New values for mean motion, mean 

anomaly, and eccentric anomaly are found and the new position obtained at the original 

time. The miss ratio is then calculated to determine how many Earth radii the new 

position differs from the old position. Outputs include new velocity vectors, orbital 

elements, true anomaly, and miss ratio for each of the five directions. 
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Summary of function files: 
trunanom: True anomaly determination from r,v,e,n. 
inch Inclination determination from h. 
Ian: Long, of Ascending Node determination from n. 
aop: Argument of Perihelion determination from n,e,r. 
rot: Rotation matrix from from perifocal to HCI. Inputs are 

Omega, i, omega. 
elip: Finds r,v;nu,dcm from Earth's rmag,dcm,nu. 
parabola: Finds r,v,nu,dcm from Earth's rmag,dcm,nu. 
earthorb: Calculates Earth's r vector in perifocal and HCI from a,ecc,dcm. 
cx,cy,cz: Compute a single axis direction cosine matrix. 
tlop: Compute true longitude of perihelion from e. 
deltav: Computes the new velocity vector components after the delta v is 

imparted to the asteroid. 
elements: Returns the matrix sets of: 

el_prev: orbital elements prior to deflection. 
el_next: orbital elements after deflection. 
rv_next: position and velocity vectors at original impact 

time. 
elip 1: Computes the asteroid's orbit given the Earth's rmag,dcm,nu and 

user defined values for a,e,i. 
elip2: Computes the asteroid's new r,v given the asteroid's position at 

deflection, r, the dem from the orbital elements, the position in the 
old orbit, ecc_a,a_a. 

function 1/2: Solve Kepler's equation for E. 
param: Given r,v returns a,ecc,Omega,incl,omega,nu,E,M,dcm,rmag. 

Variables: 
_ma5 

r: Position vector. 
v: Velocity vector. 
e: Eccentricity vector. 
n: Node vector. 
h: Angular momentum vector. 
Omega: Longitude of the ascending node. 
i: Inclination. 
omega: Argument of perihelion. 
dem: Direction cosine matrix from perifocal to heliocentric-ecliptic 

coordinate system for Earth's orbit. 
nu: True anomaly. 
a: Semi-major axis. 
ecc: Eccentricity. 
dcm2: Direction cosine matrix from perifocal to heliocentric-ecliptic 

coordinate system for asteroid's orbit. 
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*_e Earth variable. 
*_a Asteroid variable. 
*_old Asteroid variable at time of impact. 
*_prev Asteroid variable at some time prior to impact. 
*_new Asteroid variable just after application of change in velocity. 
*_next Asteroid variable in new orbit but at time of original impact. 
p Semi-latus rectum. 
r_p Perihelion distance. 
r_a Aphelion distance. 
E Eccentric anomaly. 
M Mean anomaly. 
n Mean motion. 
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I. ORBIT DETERMINATION AND GRAPHING SCRIPTS 

A. CALCULATE AND PLOT ORBITS: FILE ENTITLED DEMO.M 

Given: The Earth's position and velocity vectors. 
First: Calculate the Earth's orbital elements. 
Second: Plot the Earth's orbit wrt the mean ecliptic. 
Third: Choose the type of assailant object orbit: 

a. Circular or elliptical 
b. Parabolic 
c. Hyperbolic 

Fourth: Choose the desired values for: 
a. Semi-major axis or parameter 
b. Eccentricity 
c. New inclination with respect to Earth's inclination. 

clear 

Constants 
rtd=180/pi; 
dtr=l/rtd; 
I = [1 0 0] 
J = [0 10] 
K = [0 0 1] 
AU = 1.4959965e8; 
TU = 5.0226757e6; 
SU = 29.784852; 
mu = 1; 

Radians to degrees 
Degrees to radians 
Unit vectors 

km 
sec 
km/sec 
kmA3/sec*2 

Earth values: 
rl=[-26 144.8 -.00038]; 
vl=[-29.8 -5.376 -.000043]; 

% Position 
% Velocity 

r=rl*le6/AU; 
v=vl/SU; 

rmag=norm(r); 
vmag=norm(v); 

angular momentum 
h=cross(r,v); 

hmag=norm(h); 

eccentricity vector 
e=cross(v,h)-r/rmag; 

ecc=norm(e); 

if ecc<le-10, 
e = [0 0 0]; 
ecc=0; 

Check if eccentricity is zero 
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end 

% node vector 
n = cross (K,h) ,- 

nmag=norm(n) ; 

if nmag<le-10,    % Check if inclination is zero 
n = [0 0 0]; 
nmag=0; 

end 

% Find the true anomaly at epoch 
nu - truanom(r,v, e,n) ,- 

i ■'.'oTipute the inclination 
inc -■: incl(h) 

% Compute the longitude of ascending node 
Onvaga=lan (n) 

% Compute the argument of perigee 
omega = aop(n,e,r) 

% Compute the rotation matrix 
dcm=rot(Omega,inc,omega),- 

% Determine if user wants another orbit calculated 
pit = input('Do you want to calculate a new orbit? y/n [y]:',•s'); 

if isempty(plt) 
pit = ■y; 

end 

\f.  pit == 'y', 

I ;-***** ***************************************************** 

% : :.'oose an a,e for orbit and solve for nu_2 for the new orbit 

f priiitf(' \n'Vcu may now calculate a new intercept orbit type.\n'); 

type- = input (:Do you want to plot an Ellipse, Parabola, or Hyperbola? e/p/h 
[".}  : ', 's') ; 

if is empty(type) 

type = 'e'; 
end 

if type == 'e',   % Eliptical/Circular Plot 

[r_new, v_new,nu_new,dcm2] =elip (rmag,dcm,nu) ,- 

elseif rype == 'p',     % Parabolic Orbit Plot 
[r_new,v_new,nu_new]=parabola(rmag,dcm,nu) 

elseif type == 'h',     % Hyperbolic Orbit Plot 
[r_new,v_new,nu_new]=hyperb(rmag,dem,nu) 
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end  % end plotting of second orbit 

r_old = rl 
r_new = r_new * AU/le6 
v_old = vl 
v_new = v_new*SU 
del_v = abs(norm(v_old-v_new)) 

end 

% Calculate the Earth's orbit 
p = hmagA2/mu;   % semilatus rectum 
a = p/(l-eccA2);  % semimajor axis 
rp = p/(l+ecc);   % perigee 
ra = p/(l-ecc);   % appogee 
[x,y,z,xx,yy,zz]=earthorb(a,ecc,dem); 

% Plot the Earth's orbit with respect to the ecliptic 
hold on; 
plot3(xx,yy,zz,'m'); % orbit 

xyz_r=r; % position 
plot3 (xyz_r (1) ,xyz_r (2) ,xyz_r (3) , 'g+') ,- 

if type == 'e',    % Eliptical/Circular Plot 
legend('b','Asteroid''s 

orbit','or','Perihelion','*r','Aphelion','+g','Current Position',... 
'm','Earth''s orbit') 

elseif type == 'p' | 'h',     % Parabolic Orbit Plot 
legend('b','Asteroid1's orbit','or','Perihelion','+g','Current 

Position',... 
'm','Earth''s orbit') 

end 

xyz_per=dcm*[rp;0;0];        % perihelion 
plot3 (xyz_per (1) ,xyz_per (2) ,xyz_per (3) , 'mo') ,- 

xyz_apo=dcm*[-ra;0;0];       % aphelion 
plot3 (xyz_apo (1) ,xyz_apo (2) ,xy'z_apo (3) , 'm* ') ; 

% end plotting of second orbit 

% Axis plotting statements. 

1=2; 
ds=.2; 
A=[0 0 0;1 0 0] ; 
B=[0 0 0;0 1 0] ; 
C=[0 0 0;0 0 1] ; 
plot3(A,B,C,'w'); 
text(1+ds,0,0,'X','horizontalalignment','center'); 
text(0,1+ds,0,'Y','horizontalalignment','center'); 

73 



text(0,0,1+ds,'Z','horizontalalignment','center' 
view(viewmtx(135,3 0,25)); 
title('General View'); 
axis ('square'),-axis off; 
axis([-a,a,-a,a,-a,a]); 
end; 

View radio buttons 
txt_view=uicontrol(gcf,... 

'Style','text' 
'String','Asteroid Orbit View' 
'Units','normalized',... 
'Position', [.05, .87, .20, .03]); 

view_gen=uicontrol(gcf,... 
'Style','radio' 
'String','Standard' 
'Units','normalized',... 
'Position', [.05,.80, .20, .05],. 

'Value',1,... 
'CallBack',[... 
'title(''General View'') 
'set(view_gen,''Value'', 1) 
'set(view_x,''Value'',0),'. 
'set(view_y,''Value'',0),'. 
'set(view_z,''Value'',0),'. 
'set(view_n,''Value'',0),'. 
'view(135,30)' ] ) ; 

view_x=uicontrol(gcf,... 
'Style','radio' 
'String','Down X Axis',... 
'Units','normalized',... 
'Position', [.05, .75, .20,.05],... 
'CallBack',[... 
1 title(''View Looking Down +X axis''),' 

'set(view_gen,''Value'',0),' 
'set(view_x,''Value' ' ,1),' . . 
'set(view_y,''Value' ' ,0), ' . . 
'set(view_z,''Value'',0),'.. 
'set(view_n,''Value'',0),*.. 
'view( [1,0,0] )']) ,- 

view_y=uicontrol(gcf,... 
'Style','radio' 
'String','Down Y Axis',... 
'Units','normalized',... 
'Position', [.05, .70,.20,.05], . . . 

■CallBack', [... 
' title(''View Looking Down +Y axis1'),' 
'set(view_gen,''Value'',0), 
'set(view_x,''Value'',0),'. 
■set(view_y,''Value'',1),'. 
'set(view_z,''Value'',0),'. 
'set(view_n,''Value' ',0),' . 
'view([0,1,0])']); 
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view_z=uicontrol(gcf,... 
'Style','radio' 
'String','Down Z Axis',... 
'Units','normalized',... 
'Position', [.05, .65,.20,.05],... 

'CallBack',[... 
'title (' 'View Looking Down +Z axis''),' 
'set(view_gen,''Value'',0), 
'set(view_x,''Value'',0),'. 
'set(view_y,''Value'',0),'. 
'set(view_z,''Value'',1),'. 
'set(view_n,''Value'',0),•. 
'view([0,0,1])']) ; 

xyz_norm=dcm2 *[0;0;1] ; 
view_n=uicontrol(gcf,. 

'Style','radio' 
'String','Down Orbit Normal',... 
'Units','normalized',... 
'Position', [.05, .60, .20, .05], . . . 

'CallBack', [... 
'title(''View Looking Down Orbit Normal''),' 
'set(view_gen,''Value'',0), 
'set(view_x,''Value'',0),'. 
'set(view_y,''Value'',0),'. 
'set(view_z,*'Value'',0),'. 
'set(view_n,''Value'',1),'. 
'view([xyz_norm(1),xyz_norm(2),xyz_norm(3)])' ]) ; 

%  Zoom Slider 
zoom=uicontrol(gcf,... 

'Style','slider' 
'Units','normalized',... 
'Position',[.05,.15,.20,.05],... 
'Min',.5,'Max',5.5,'Value',1,... 
'CallBack', [.. . 

'set(zoom_cur,''String'',num2str(get(zoom,''Val*'))),',.. 
'set(gca,''Xlim'',[- 

get(zoom,''Value''),get(zoom,''Value'')],',... 
'''Ylim'',[-get(zoom,''Value''),get(zoom,''Value'')],',.. 
' ' 'Zlim' ' , [-get (zoom, ' 'Value' ') ,get (zoom, ' 'Value' ')])']),- 

zoom_label=uicontrol(gcf, . . . 
'Style','text' 
'Units','normalized',... 
'Position', [.05, .205, .20,.03], ... 
'String' , 'Zoom') ,- 

zoom_cur=uicontrol(gcf,... 
'Style','text' 
'Units','normalized' , ... 
'Position', [.095, .115, .11, .03] , ... 
'String',num2str(get(zoom,'Value') ) ) ; 

zoom_in=uicontrol(gcf,... 
'Style','text' 
'Units','normalized',... 

75 



'Position', [.05,.115,.04,.03], 
'String','In1); 

zoom_out=uicontrol(gcf,... 
'Style','text' 
'Units','normalized' 
'Position', [.21,.115,.04,.03], 
'String','Out'); 

% Print push button 
prt 

B.AOP 

Calculation of the argument of 
perigee, in degrees 

LCDR Wade Knudson 
Naval Postgraduate School 
Orbit Visualization Routines 

Inputs:  n,e,r 

Output:  omega 

Files called:  tlop 

[omega] = aop(n,e,r) 

C. ARGUMENT OF PERIHELION 
function [omega] = aop(n,e,r) 

nmag=norm(n); 
ecc=norm(e); 
rmag=norm(r) ,- 
I = [10 0],- 
J = [0 10]; 
K = [0 0 1]; 
rtd=180/pi; 

% Check to see if the orbit is circular (e=0) and in the ecliptic (n=0); 
% if so, then omega is not used; use true longitude at epoch (Vallado p. 
139) 

if nmag == 0 & ecc == 0, 
omega = 0; 
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% Check to see if the orbit is elliptical (e>0) and in the ecliptic (n=0); 
% if so, then omega is not used; use true longitude of periapsis (Vallado 
p. 136) 

elseif nmag == 0 & ecc ~=0, 
om_true = tlop(e); 
%fprintf('This is an elliptical orbit in the ecliptic.\n') 
%fprintf('The inclination is zero.\n') 
%fprintf C\n') 
%fprintf('The angle between Aries and periapsis is called \n') 
%fprintf('the true longitude of periapsis, and is %3.1f 

deg.\n',om_true) 
omega = om_true; 

% Check to see if the orbit is a circular (e=0) and inclined to the 
ecliptic 
elseif nmag ~= 0 & ecc == 0, 

if dot(r,K)<0, 
omega = 360 - acos(dot(n,r)/(nmag*rmag))*rtd; 

else 
omega = acos(dot(n,r)/(nmag*rmag))*rtd; 

end 

All remaining cases 
else 

if dot(e,K) < 0, 
omega = 360 - acos (dot (n,e) / (nmag*ecc) ) *rtd,- 

else 
omega = acos(dot(n,e)/(nmag*ecc))*rtd; 

end 

end 

D.CX 
function f=cx(angle) 

f=[l 0 0; 0 cos(angle) sin(angle); 0 -sin(angle) cos(angle)]; 

E. CY 
function f=cy(angle) 

f=[cos(angle) 0 -sin(angle); 0 1 0; sin(angle) 0 cos(angle)]; 

F. CZ 
function f=cz(angle) 

f=[cos(angle)   sin(angle)   0;   -sin(angle)   cos(angle)   0;   0  0  1]; 
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G. EARTH ORB 

Calculation of the Earth's orbit 

LCDR Wade Knudson * 
Naval Postgraduate School * 
Orbit Visualization Routines * 

* 
Inputs:  a,ecc,dcm * 

* 

Output:  x,y,z:  perifocal coordinates * 
xx,yy,zz:  heliocentric coordinates * 

* 

Files called:  None * 
* 

[x,y,z,xx,yy,zz] = earthorb(a,ecc,dcm) * 
* 

function [x,y,z,xx,yy,zz] = earthorb(a,ecc,dem) 

m=4 00; 
E=linspace(0,2*pi,m); 
x=-a*ecc+a*cos(E);y=a*sqrt(l-eccA2)*sin(E);  %Battinp. 158 
z=zeros(l,m); 
for k=l:m 

point =dcm* [x(k) ,-y (k) ,-z (k) ] ,- 
xx(k) =point (1) ;yy (k) =point (2) ,-zz (k) =point (3) ; 

end; 

H. E7TPTICAL ORBIT CALCULATIONS 

* 

Calculation of the Eliptical/circular orbit * 

LCDR Wade Knudson * 
Naval Postgraduate School * 
Orbit Visualization Routines * 

* 
Inputs:  rmag,dcm,nu * 

* 
User inputs:  a,ecc,incl * 

Output:  r,v, and nu for the new orbit 

Files called:  cx,cz 
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[r,v,nu_new] = elip(rmag,dcm,nu) 

function [r,v,nu_new,dcm2] = elip(rmag,dem,nu) 

% Constants 
rtd = 180/pi; 
dtr = 1/rtd; 
mu = 1; 

%a = input('Type in the semi-major axis') 

% If ecc == 0, then 'a' must equal rmag. 
% If ecc  ~= 0, then rp < a < ra. 

a=2.032; 
ecc=.651; 
newinc=5.46; 

if ecc ==0, % If circular then no 
% rotation to argument 

nu_new =0; % of periapsis (nu_new) 
a = rmag; 
p = a; 

else 
p =a* (l-ecc^2) ,- 
nu_new=acos((p/rmag-1)/ecc)*rtd;   % true anomaly 

end 

rp = p/(l+ecc); % periapsis 
ra = p/(l-ecc); % apoapsis 

% Perifocal coordinates 
r = [rmag*cos(nu_new*dtr) rmag*sin(nu_new*dtr) 0]; 
v = sqrt(mu/p)*[-sin(nu_new*dtr) ecc+cos(nu_new*dtr) 0] ; 

% rotate the new orbit to the line of node (-nu), then to desired 
inclination, 
% and finally rotate nu_2 to get epoch to r. 

% Asteroid's dem matrix 
dcm2= dcm*cz (-nu*dtr) *cx(-newinc*dtr) *cz (nu_new*dtr) ,- 

m=2 00; 
E=linspace(0,2*pi,m); 
x=-a*ecc+a*cos(E); 
y=a*sqrt(l-eccA2)*sin(E);  % Battin p. 158 
z=zeros(l,m); 
for k=l:m 

point =dcm* [x(k) ,-y (k) ,-z (k) ] ; 
xx (k) =point (1) ;yy(k) =point (2) ,-zz (k) =point (3) ; 
point2=dcm2*[x(k);y(k);z(k)]; 
xxx (k) =point2 (1) ,-yyy (k) =point2 (2) ,-zzz (k) =point2 (3) ; 
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end 

Plot the asteroid's new orbit 
hold on; 

plot3(xxx,yyy/zzz/'b') ; % orbit 

xyz_per=dcm2*[rp;0;0]; % perihelion 
plot3 (xyz_per(l) ,xyz_per(2) ,xyz_per(3) , 'bo') ,• 

xyz_apo=dcm2*[-ra;0;0]; % aphelion 
plot3(xyz_apo(l),xyz_apo(2),xyz_apo(3),'b*'); 

xyz_r=(dcm2*r')'; % position 
% rvector 

plot3 (xyz_r(l) ,xyz_r(2) ,xyz_r(3) , ' g+') ,- 

legend('Asteroid''s orbit','Perihelion','Aphelion') 

Calculate the new r,v vectors 
r = xyz_r; 
v = (dcm2*V ) ' ; 

I. INCLINATION 

r    Calculation of the inclination in degrees 

r    LCDR Wade Knudson 
Naval Postgraduate School 
Orbit Visualization Routines 

Inputs:  h 

Output:  inc 

Files called:  none 

[inc] = inc(h) 

function inc = inc(h) 

K=[0 0 1] ; 
rtd=18 0/pi; 
hmag=norm(h); 

inc = acos(dot(h,K)/hmag)*rtd; 
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J.    LONGITUDE OF ASCENDING NODE 

* 
Calculation of the  longitude of * 
the ascending node,   in degrees * 

* 
LCDR Wade Knudson * 
Naval Postgraduate School * 
Orbit Visualization Routines * 

* 
Inputs:  n * 

* 

Output:  Omega * 
* 

Files  called:     none * 
* 

[Omega]   =  lan(n) * 

function   [Omega]   =  lan(n) 

nmag=norm(n); 
I  =   [10   0]; 
J  =   [0   10]; 
rtd=180/pi; 

if nmag ==0, % Provides check for inclination 
Omega =0; % If no inclination then no Omega 

else % If some inclination then 
% find Omega 

if dot (n, J) < 0, 
Omega = 360 - acos(dot(n,I)/nmag)*rtd; 

else 
Omega = acos(dot(n,I)/nmag)*rtd; 

end 

end 

K. PARABOLA 

3-D plot of the parabolic orbit which intercepts      * 
the Earth's position at a given time * 

* 
LCDR Wade Knudson * 
Naval Postgraduate School * 
Orbit Visualization Routines * 

* 
Inputs:  rmag,dcm,nu * 
User input:  p,incl * 

* 
Output:  r,v, and nu for the new orbit * 
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Files called:  cx,cz * 
* 

[r,v,nu_new] = parabola(rmag,dem,nu) * 
* 

function [r,v,nu_new] = parabola(rmag,dem,nu) 

% Constants 
rtd = 18 0/pi; 
dtr = 1/rtd; 
mu = 1 ; 

P=l-9; 
newinc=90; 

ecc=l; 

nu_new=acos((p/rmag-1)/ecc)*rtd; % true anomaly 

rp = p/(l+ecc) % perihelion 

% Perifocal Coordinates 
r = [rmag*cos(nu_new*dtr) rmag*sin(nu_new*dtr) 0] ; 
v = sqrt(mu/p)*[-sin(nu_new*dtr) ecc+cos(nu_new*dtr) 0] ; 

% rotate the new orbit to the line of node (-nu), then to desired 
inclination, 
% and finally rotate nu_2 to get epoch to r. 

dcm2= dcm*cz (-nu*dtr) *cx(-newinc*dtr) *cz (nu new*dtr) ,- 

m=200; 
f=linspace(-pi+.l,pi-.l,m); 
xl = (p*cos(f));yl = (p*sin(f)); 

x2 = (1+cos(f));y2 = (l+cos(f)); 

x = xl./x2,-y = yl./y2;  % Battin p. 158 
z=zeros (l,m) ,- 

for k=l:m 
point =dcm* [x(k) ,-y (k) ,-z (k) ] ; 
xx (k) =point (1) ,-yy(k) =point (2) ,-zz (k) =point (3) ,- 
point2=dcm2* [x(k) ; y(k) ; z (k) ] ,• 
xxx(k) =point2 (1) ;yyy(k) =point2 (2) ,-zzz (k)=point2 (3) 

end 

Plot the asteroid's new orbit 
hold on; 
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plot3(xxx,yyy,zzz,'b'); % orbit 

xyz_per=dcm2* [rp,-0; 0] ; % perihelion 
plot3(xyz_per(1),xyz_per(2),xyz_per(3),'bo'); 

xyz_r=(dcm2*rT ) ' ; % position 
% rvector 

plot3(xyz_r(1),xyz_r(2),xyz_r(3) ,'g+'); 

% Calculate the new r,v vectors and orbital elements, 
r = xyz_r 
v = (dcm2*V ) ' 

L. PRINT 
% Puts a print push button on a figure, 
function prnbut = prt 

prt=uicontrol(gcf, . . . 
'Style','push' 
'Units','normalized' , . . . 
'Position', [.05,.02,.20,.05] 
'String','Print' 
'CallBack','print' ) ; 

M. ROTATION DCM 

* 
Calculation of the rotation matrices for a 3-1-3       * 
rotation to convert from perifocal coordinates to     * 
heliocentric-ecliptic * 

* 
LCDR Wade Knudson * 
Naval Postgraduate School * 
Orbit Visualization Routines * 

* 
Inputs:  Omega,inc,omega * 

* 
Output:  dem * 

* 
Files called:  cx,cz * 

* 
[dem] = rotmat(Omega,inc,omega) * 

function [dem] = rot(Omega,inc,omega) 

dtr=pi/18 0; 

0=0mega*dtr; 
i=inc*dtr; 
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o=omega*dtr; 

dem =  cz(-O)*cx(-i)*cz(-o) ; 

N.   TRUE LONGITUDE OF PERIHELION 

True longitude of periapsis * 
Used for elliptical orbits in the reference plane     * 

* 
LCDR Wade Knudson * 
Naval Postgraduate School * 
Orbit Visualization Routines * 

* 
Inputs:  e * 

* 
Output:  True longitude of periapsis * 

* 
Files called:  none * 

[om_true] = tlop(e) 

function om_true = tlop(e) 

rtd = 18 0/pi; 
I = [10 0]; 
J = [0 10]; 
emag = norm(e); 

if dot(J,e) < 0, 
om_true =360 - acos(dot(I,e)/emag)*rtd; 

else 
om_true = acos(dot(I,e)/emag)*rtd; 

end 

O. TRUE ANOMALY 

* 
Calculation of the true anomaly at epoch, in degrees  * 

* 
* 

LCDR Wade Knudson * 
Naval Postgraduate School * 
Orbit Visualization Routines * 

* 
Inputs:  r,v,e * 

* 
Output:  nu 

Files called:  none * 
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[nu] = truanom(r,v,e,n) 

function [nu] = truanom(r,v,e,n) 

rmag=norm(r); 
nmag=norm(n) ,- 
ecc=norm(e); 
rmag=norm(r); 
I = [10 0]; 
J = [0 10]; 
K = [0 0 1]; 
rtd=18 0/pi; 

% First check for circular orbit in the ecliptic.  If not, skip, 
if ecc ===== 0 & n == 0, 

if dot(J,r)<0, 
lamda_t = 360 - acos(dot(I,r)/rmag)*rtd; 

else 
lamda_t = acos(dot(I,r)/rmag)*rtd; 

end 

nu = lamda_t; 
%fprintf('This is a circular orbit in the ecliptic. \n') 
%fprintf('The longitude of ascending node is undefined.\n') 
%fprintf('The inclination is zero.\n') 
fprintf C\n') 
%fprintf('The angle between aries and the position of the body\n') 
%fprintf('is called the true longitude at epoch, and is %3.1f deg.\n',nu) 

% Next check for circular inclined orbit.  If not, skip, 
elseif ecc  == 0 & nmag ~= 0, 

if dot(r,K)<0, 
u = 36 0 - acos(dot(n,r)/(nmag*rmag))*rtd; 

else 
u = acos(dot(n,r)/(nmag*rmag))*rtd; 

end 

nu = u; 
fprintf('This is a circular, inclined orbit. \n') 
fprintf C\n') 
fprintf('The argument of perigee is known as the \n') 
fprintf('argument of latitude at epoch, and is %3.If deg.\n',u) 

else 
if dot(r,v) < 0, 

[nu] = 360 - acos(dot(e,r)/(ecc*rmag))*rtd; 
else 

[nu] = acos(dot(e,r)/(ecc*rmag))*rtd; 
end 

%fprintf('This is an elliptical orbit. \n') 
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if nmag == 0 & ecc ~= 0, 
%fprintf('The orbit is in the ecliptic.\n') 

else 
%fprintf('The orbit is inclined to the ecliptic.\n' 

end 
%fprintf('\n') 
%fprintf('The true anomaly at epoch is %3.1f deg.\n',nu) 

end 
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H. SENSITIVITY SCRIPTS 

A. MISS RATIO CALCULATIONS: DEMOl 
clear all 
rtd= =180/pi; 
dtr= =l/rtd; 
I = [1 0 0] ; 
J = [0 1 0] ; 
K = [0 0 1] ; 
AU = = 1. 4959965e8; % km 
TU = = 5. 0226757e6; % sec 
SU = = 2S .784852; % km/sec 
mu = = 1; % kmA3/secx2 

%r=[-26 144.8 -.00038]; 
%v=[-29.8 -5.376 -0.000043]; 

r=[AU 0 0]/le6; 
v=[0 SU 0] ; 
num orbs = 1; 

% Calculate the orbital elements for the Earth from the r/v vectors; 
% Input are the position and velocity vectors 
% Outputs are shown: 

[a_e,ecc_e,0_e,inc_e,o_e,nu_e,E_e,M_e,dcm_e,rmag_e] = param(r,v); 

% choose an a,e for orbit and solve for nu_2 for the new orbit 

% Determine if user wants another orbit calculated 
%plt = input('Do you want to calculate a new orbit? y/n [y]:','s'); 

%if isempty(plt) 
pit = 'y'; 

%end 

if pit == 'y', 

%fprintf('\nYou may now calculate a new intercept orbit type.\n'); 

%type = input('Do you want to plot an Ellipse, Parabola, or Hyperbola? 
e/p/h [e]:','s') ; 
%if isempty(type) 

type = 'e'; 
%end 
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O,   *-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA> kAAAAAAAAA 

% Calculate new r/v vectors based on inputting desired values of 
% a,e,inc.  Omega,omega, and nu are not variables, but fixed, based 
% on the Earth's orbit. 

if type == 'e',   % Eliptical/Circular Plot 
[r_new, v_new,nu_new,dcm2,ecc] =elipl (rmag_e,dcm_e,nu_e) ,- 

elseif type == 'p',    % Parabolic Orbit Plot 
[r__new, v_new,nu_new] =parabola (rmag,dcm,nu) 

elseif type == 'h',    % Hyperbolic Orbit Plot 
[r_new,v_new,nu_new]=hyperb(rmag,dem,nu) 

end  % end plotting of second orbit 

% Compute the orbital parameters of the new orbit: 
global compare 
[a_a,ecc_a,0_a, inc_a,o_a,nu_a,E_a,M_a,dcm_a,rmag_a] = param(r_new, v_new) ,- 

% Compute the period of the asteroid's orbit 
mu_s = 1; 
TP = 2*pi*(a_a)"l.5/sqrt(mu_s)*TU/3600/24/365.25;    % In Earth years 

% Input here how many asteroid orbits to go through.  You should go through 
% at least one asteroid orbital period to ensure sufficient time for 
deflection. 
n_a= sgrt(mu_s/a_a*3); % mean motion 
t=-TP*num_orbs*365.25*24*3600/TU;    % convert years to canonical 
global t 

% Compute the required delta V required along the flight path 
del_tot=0.000135/num_orbs; 

% Compute mean anomaly for some past time. 
M_prev = M_a + n_a*t; 
M_prevl = M_prev - f ix (M_prev/2/pi) *2*pi + 2*pi,- 
global M_prev ecc_a 

% Previous eccentric anomaly 
E_prev = fzero ('fun',M_prev) ,• 

% Compute previous true anomaly 
nu_prev = acos ( (ecc_a-cos(E_prev))/(ecc_a*cos(E_prev)-l))*rtd; 

% Compute rmag for previous time 
rmag_prev = a_a* (l-ecc_a*cos (E_prev) ) ,- 

% Compute the r/v at the previous time 
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[r_prev v_prev] =elip2 (rmag_prev, dcm_a, nu_prev, ecc_a, a_a) ; 

% [a_a_p, ecc_a_p,0_a_p, inc_a_p,o_a_p/nu_a_p, E_a_p,M_a_p,dcm_a_p] 
param(r_prev, v_prev) ,- 

% Compute the new matrix of delta_v's 
[el_prev el_next rv_next]=deltav(r_prev,v_prev,del_tot,nu_new); 

delta_rv=zeros(6,6); 
for s=l:6 

delta_rv(s,1:3) = (r_e - rv_next(s,1:3))*le6; 
delta_rv(s,4:6)   = vjprev -  ry_next(s,4:6); 
mag_del_rv(s,:)   =   [norm(delta_rv(s;1:3))   norm(delta_rv(s,4:6))]; 

end 

time_ratio= [nu_new a_a ecc_a (mag_del_rv(2 :6,1) /6378 .145) ' ] ; 
fprintf('\n    nu    a     e    0.0    22.5   45    67.5 

90\n*); 
fprintf('\n 

%7.4f%7.4f%7.4f%7.4f%7.4f%7.4f%7.4f%7.4f%7.4f\n\n',[time_ratio]); 
fprintf ('\n') ,- 

keyboard 

B. DELTA V DETERMINATION 
function [el_prev,el_next,rv_next] = deltav(rl,vl,dv_tot,nu_new) 

%  Constants 
rtd=18 0/pi; 
dtr=l/rtd; 
I = [10 0]; 
J = [0 10]; 
K = [0 0 1]; 
AÜ = 1.4959965e8; % km 
TU = 5.0226757e6; % sec 
SU = 29.784852; % km/sec 
mu = 1; % km*3/secA2 

% Orbit values: 
r=rl*le6/AU; 
V=vl/Sü; 

rmag=norm(r); 
vmag=norm(v); 

% angular momentum 
h=cross(r,v); 

hmag=norm(h); 

% eccentricity vector 
e=cross(v,h)-r/rmag; 

ecc=norm(e); 
if ecc<le-10, % Check if eccentricity is zero 

e = [0 0 0]; 
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ecc=0; 
end 

% node vector 
n = cross(K,h); 

nmag=norm(n); 

if nmag<le-10, % Check if inclination is zero 
n = [0 0 0]; 
nmag=0; 

end 

%• Find the true anomaly at epoch 
nu = truanom(r,v,e,n); 

% Compute the inclination 
inc = incl(h); 

% Compute the longitude of ascending node 
Omega=lan(n),- 

% Compute the argument of perigee 
omega = aop(n,e,r); 

% Compute the rotation matrix 
dcm=rot (Omega, inc,omega) ,- 

direct=linspace(pi/2,0,5); 
x=cos(direct); y=sin(direct); 
z=zeros(1,5); 

for k = 1:5, 

dv=[x(k) y(k) z (k) ] ; 

if abs(x(k))<le-12 
x(k)=0; 

end 

if abs(y(k))<le-12 
y(k)=0; 

end 

if abs(y(k))<le-12 
y(k)=0; 

end 

end 

z=zeros(1,5); 
epoch=0; 

dvl = (dv_tot*[x(l) y(l) z(l)]') 
dv2 = (dv_tot*[x(2) y(2) z(2)]') 
dv3 = (dv_tot*[x(3) y(3) z(3)]') 
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dv4 = (dv_tot*[x(4) 
dv5 = (dv tot* [x(5) 

y(4) z(4)] •) ; 
y(5) z(5)] ■); 

rot = cz(nu new*dtr); 

vnew 1 = (rot*(vl + dvl')')' 
vnew 2 = (rot*(vl + dv2')')' 
vnew 3 = (rot*(vl + dv3')')' 
vnew 4 = (rot*(vl + dv4')')' 
vnew 5 = (rot*(vl + dv5')')' 

% Print the old position and velocity vectors and the new velocity 
vectors 

rjprev = rl; 
v_prev = vl; 
dv = [v_j?rev; vnew_l; vnew_2; vnew_3; vnew_4; vnew_5 ] ; 

%fid=fopen('new_orb.vec','w'); 
%fprintf(fid,'ObjVectors x y z       vx       vy 
vz    epoch\n'); 
%fprintf(fid,'%6.Of%11.5f%11.5f%ll.5f%10.6f%10.6f%10.6f%11.4f\n',[0 r_prev 
vjprev epoch] ) ; 
%fprintf(fid,'%6.Of%11.5f%ll.5f%11.5f%10.6f%10.6f%10.6f%ll.4f\n',[1 r_prev 
vnew_l  epoch]); 
%fprintf(fid,•%6.Of%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f%11.4f\n',[2 r_prev 
vnew_2  epoch]); 
%fprintf(fid,'%6.Of%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f%ll.4f\n',[3 r_prev 
vnew_3 epoch]); 
%fprintf(fid,'%6.Of%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f%ll.4f\n',[4 r_prev 
vnew_4  epoch]); 
%fprintf(fid,'%6.0f%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f%11.4f\n',[5 r_prev 
vnew_5  epoch]); 

%fprintf('\nObjVectors x y z       vx       vy 
vz \n'); 
%fprintf('%6.0f%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f\n', [0  r_prev v_prev ] 
%fprintf('%6.0f%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f\n',[1  r_prev vnew_l ] 
%fprintfC%6.0f%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f\n',[2  r_prev vnew_2 ] 
%fprintf('%6.0f%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f\n,,[3  r_prev vnew_3 ] 
%fprintf('%6.0f%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f\n',[4  r_prev vnew_4 ] 
%fprintfC%6.0f%11.5f%11.5f%11.5f%10.6f%10.6f%10.6f\n',[5  r_prev vnew_5 ] 

[el_prev,el_next,rv_next]=elements(rl,dv,epoch,nu_new); 

C. DETERMINATION OF ORBITAL ELEMENTS 
%  First bring  in the r and v vectors  that you want  to convert. 
% r  is  the position vector 
% dv  is  a  5x3  matrix with the velocity vectors  for the various  delta v's 
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function tel_prev,el_next,rv_next] = elements(r,dv,epoch,nu_new) 

rl= r; 
vl = dv; 

Constants 
rtd=180/pi; 
dtr=l/rtd; 
I = [10 0] 
J = [0 10] 
K = [0 0 1] 
AU = 1.4959965e8; 
TU = 5.0226757e6; 
SU = 29.784852; 
mu = 1; 

% km 
% sec 
% km/sec 
% kmA3/secA2 

% Orbit values: 

[m n]=size(dv); 

for s = l:m, 

% Convrirt; to canonical units 
r=rl*le6/AU; 
v=vl(s,:)/SU; 

rmag=norm(r); 
vmag=norm(v); 

% angular momenturr: 
h=cross(r,v); 
hmag=norm(h); 

% eccentricity vector 
e=cross(v,h)-r/rmag; 
ecc_n=norm(e); 

if ecc_n<le-10, 
e = [0 0 0]; 
ecc_n=0; 
end 

Check if eccentricity is zero 

% semi-major axis 
p = hmag*2/mu; 
a = p/(l-ecc_nA2); 

% node vector 
n = crosü(K,h); 

nmag=norm(n) 
if nmag<le-10, 

n = [C 10]; 
Check if inclination is zero 
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nmag=0; 
end 

Find the true anomaly at epoch 
nu = truanom(r,v,e,n) ; 

% Compute the inclination 
inc = incl(h); 

% Compute the longitude of ascending node 
Omega=lan(n) ,• 

% Compute the argument of perigee 
omega = aop(n,e,r); 

%■ Compute the rotation matrix 
dcm=rot(Omega,inc,omega) ; 

% Compute the eccentric anomaly and mean anomaly 
E = acos( (ecc_n + cos(nu*dtr)) / (1+ ecc_n*cos(nu*dtr)) ); 

if nu>180 
E=2*pi-E; 

end 

M = (E - ecc_n*sin(E)) ; 

H=0; 
mu_s=l; 
n = sgrt(mu_s/aA3); 
global t 
M_next = M - n*t; 
M_nextl = M_next - fix(M_next/2/pi)*2*pi; 
global M_next ecc_n 

% Next eccentric anomaly 
E_next = fzero('funl',M_next); 

% Compute next true anomaly 
nu_next = acos((ecc_n-cos(E_next))/(ecc_n*cos(E_next)-1))*rtd; 

if sin(E_next)<0, 
nu_next=3 6 0-nu_next; 

end 
% Compute rmag for next time 
rmag_next = a*(l-ecc_n*cos(E_next)); 

% Compute the r/v at the next time 
[r_next v_next]=elip2(rmag_next,nu_new,nu_next,ecc_n,a); 

r_next=r_next; 
v_next=v_next; 

el_prev(s,:)=[a ecc_n Omega inc omega M n E]; 
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el_next (s, :) = [M_nextl E_next nu_next rmag_next]; 
rv_next(s,:)=[r_next v_next]; 

end 

D. ELIP 1 

% 

°-    Calculation of the Eliptical/circular orbit 
* 
* 
* 

% 
%    LCDR Wade Knudson 

* 
* 

%    Naval Postgraduate School * 
%    Orbit Visualization Routines 
0, 

* 
O 

%    Inputs:  rmag,dem,nu 
1e 

* 
%     User input: a,ecc,newinc 
Q, 

* 
O 

%    Output:  r,v, and nu for the new orbit * 

%    Files called:  cx,cz * 

%     [r,v,nu_new] = elip(rmag,dem,nu) 
% 
5, 

* 
* 

function [r,v,nu_new,dcm2,ecc] = elipl(rmag,dem,nu) 

% Constants 
rtd = 18 0/pi; 
dtr = 1/rtd; 
AU = 1.4959965e8; % km 
TU = 5.0226757e6; % sec 
SU = 29.784852;   % km/sec 
mu = 1;          % kmA3/sec^2 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
y 

0 

% These are the controlling parameters of the new ellipse I 

0 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
a=l.l; 
ecc=0.1; 
r_p=a*(1-ecc); 
p= r_p*(l-ecc);  %AU /(l-ecc)/AU; 

newinc=0; 

if ecc ==0,                % If circular then no 
% rotation to argument 

nu_new =0;            % of periapsis (nu_new) 
a = rmag; 
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else 
p = a; 

p =a* (l-eccA2); 
arg=(p/rmag-1)/ecc; 

%if arg-l<le-10 
%arg=l; 

%end 

nu_new=acos (arg) *rtd;   % true anomaly- 
end 

rp = p/(1+ecc); 
ra = p/(1-ecc); 

% periapsis 
% apoapsis 

^Perifocal coordinates 
rl = [rmag*cos (nu_new*dtr) rmag*sin (nu_new*dtr) 0] ,- 
vl = sqrt(mu/p)*[-sin(nu_new*dtr) ecc+cos(nu_new*dtr) 0]; 

h=cross(rl,vl),• 
e=cross(vl,h)/mu-r/rmag; 

% rotate the new orbit to the line of node (-nu), then to desired 
inclination, 
% and finally rotate nu_2 to get epoch to r. 

dcm2= dcm*cz(-nu*dtr)*cx(-newinc*dtr)*cz(nu_new*dtr); 
xyz_r=(dcm2*rl')'; 

r = xyz_r*AU/le6; 
v = (dcm2*vl')'*SU; 

E. ELIP 2 

Calculation of the Eliptical/circular orbit 
* 
* 

LCDR Wade Knudson 
Naval Postgraduate School 
Orbit Visualization Routines 

Input s:  rmag,dem,nu 

Output:  r,v, and nu for the new orbit 

Files called:  cx,cz 
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[r,v,nu_new] = elip(rmag,dcm,nu) 

function [r,v] = elip2(rmag,dcm,nu_prev,ecc,a) 

% Constants 
rtd=180/pi; 
dtr=l/rtd; 
I = [1 0 0] 
J = [0 1 0] 
K = [0 0 1] 
AU = 1.4959965e8;  % km 
TU = 5.0226757e6;  % sec 
SU = 29.784852;    % km/sec 
mu = 1;      % km*3/secA2 
p = a*<l-ecc*2) ; 
rp = p/(l+ecc); % periapsis 
ra = p/(l-ecc); %  apoapsis 

temp  =  cz(nu_prev*dtr),- 

r =   (temp*[rmag*cos(nu_prev*dtr);   rmag*sin(nu_prev*dtr);   0]) *; 
v =   (temp* (sqrt (mu/p) ) * [-sin(nu_prev*dtr) ,-   ecc+cos (nu_prev*dtr) ;   0] ) 

r=r*AU/le6; 
V=V*SU; 

F. FUNCTION 
% Solve Kepler's equation for E 
function x = fun(E) 
global M_prev ecc_a 

x = M_prev  -   E  +  ecc_a*sin(E) ; 

G. FUNCTION 1 
% Solve Kepler's equation for E 
function [x] = funl(E) 
global M next ecc n 

x = M_next   -   E  +  ecc_n*sin(E); 

H.PARAM 
% Solves for a,ecc,Omega,i,omega,nu,E,M,dem, and rmag from r,v 

function ta,ecc,O,inc,o,nu,E,M,dem,rmag] = param(rl,vl) 

% Const.«ats 
rtd=180/pi; 
dtr=l/rtd; 

96 



I = [1 0 0] 
J = [0 10] 
K = [0 0 1] 
AU = 1.4959965e8; % km 
TU = 5.0226757e6; % sec 
SU = 29.784852;   % km/sec 
mu = 1; % kmA3/secA2 

% Earth values: 

r=rl*le6/AU; 
v=vl/SU; 

rmag=norm(r); 
vmag=norm(v); 

% angular momentum 
h=cross(r,v); 

hmag=norm(h); 

% eccentricity vector 
e=cross(v,h)-r/rmag; 

ecc=norm(e),- 

if ecc<le-10,     % Check if eccentricity is zero 
e = [0 0 0]; 
ecc=0; 

end 

% node vector 
n = cross(K,h); 

nmag=norm(n); 

if nmag<le-10,    % Check if inclination is zero 
n = [0 0 0]; 
nmag=0; 

end 

% Find the true anomaly at epoch 
nu = truanom(r,v,e,n); 

% Compute the inclination 
inc = incl(h); 

p = hmag""2/mu; 
a = p/(l-eccA2); 

% Compute the longitude of ascending node 
0=lan(n); 

% Compute the argument of perigee 
o = aop(n,e,r); 

% Compute the rotation matrix 
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dcm=rot(0,inc,o); 

E = acos( (ecc + cos(nu*dtr) ) / (1 + ecc*cos(nu*dtr) 
M = E - ecc*sin(E); 
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